Loading…

Cosmology from the Chinese Space Station Optical Survey (CSS-OS)

The Chinese Space Station Optical Survey (CSS-OS) is a planned full sky survey operated by the Chinese Space Station Telescope (CSST). It can simultaneously perform the photometric imaging and spectroscopic slitless surveys, and will probe weak and strong gravitational lensing, galaxy clustering, in...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-10, Vol.883 (2), p.203
Main Authors: Gong, Yan, Liu, Xiangkun, Cao, Ye, Chen, Xuelei, Fan, Zuhui, Li, Ran, Li, Xiao-Dong, Li, Zhigang, Zhang, Xin, Zhan, Hu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Chinese Space Station Optical Survey (CSS-OS) is a planned full sky survey operated by the Chinese Space Station Telescope (CSST). It can simultaneously perform the photometric imaging and spectroscopic slitless surveys, and will probe weak and strong gravitational lensing, galaxy clustering, individual galaxies and galaxy clusters, active galactic nucleus, and so on. It aims to explore the properties of dark matter and dark energy and other important cosmological problems. In this work, we focus on two main CSS-OS scientific goals, i.e., the weak gravitational lensing (WL) and galaxy clustering surveys. We generate the mock CSS-OS data based on the observational COSMOS and zCOSMOS catalogs. We investigate the constraints on the cosmological parameters from the CSS-OS using the Markov Chain Monte Carlo method. The intrinsic alignments, galaxy bias, velocity dispersion, and systematics from instrumental effects in the CSST WL and galaxy clustering surveys are also included, and their impacts on the constraint results are discussed. We find that the CSS-OS can improve the constraints on the cosmological parameters by a factor of a few (even one order of magnitude in the optimistic case), compared to the current WL and galaxy clustering surveys. The constraints can be further enhanced when performing joint analysis with the WL, galaxy clustering, and galaxy-galaxy lensing data. Therefore, the CSS-OS is expected to be a powerful survey for exploring the universe. Since some assumptions may be still optimistic and simple, it is possible that the results from the real survey could be worse. We will study these issues in detail with the help of simulations in the future.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab391e