Loading…

How Initial Size Governs Core Collapse in Globular Clusters

Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarka...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-01, Vol.871 (1), p.38
Main Authors: Kremer, Kyle, Chatterjee, Sourav, Ye, Claire S., Rodriguez, Carl L., Rasio, Frederic A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193
cites cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193
container_end_page
container_issue 1
container_start_page 38
container_title The Astrophysical journal
container_volume 871
creator Kremer, Kyle
Chatterjee, Sourav
Ye, Claire S.
Rodriguez, Carl L.
Rasio, Frederic A.
description Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.
doi_str_mv 10.3847/1538-4357/aaf646
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365882950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365882950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwE9Wpc0SdPgScrcBgMPKngLafcCHbGpSavoX29LRS96eeGF7_d78CF0Tsk1y7lcUMHyhDMhF8bYjGcHaPbzdYhmhBCeZEw-H6OTGPfjmio1Qzdr_443Td3VxuGH-hPwyr9BaCIufIBhOGfaCLhu8Mr5sncm4ML1sYMQT9GRNS7C2fc7R093y8dinWzvV5vidptUnIsusUwSqZQVFZHCAhApKyMNtWlWAVhBK2XLDFjJKZelIozsZAUlhVLshKGKzdHF1NsG_9pD7PTe96EZTuqUZSLPUyXIQJGJqoKPMYDVbahfTPjQlOhRkR596NGHnhQNkcspUvv2t9O0e51LqumQ0u3ODtjVH9i_rV98WnOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365882950</pqid></control><display><type>article</type><title>How Initial Size Governs Core Collapse in Globular Clusters</title><source>Freely available EZB journals</source><creator>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</creator><creatorcontrib>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</creatorcontrib><description>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaf646</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Black holes ; Companion stars ; Computer simulation ; Globular clusters ; globular clusters: general ; Initial conditions ; Main sequence stars ; Mapping ; methods: numerical ; Milky Way ; Star clusters ; stars: black holes ; stars: kinematics and dynamics ; White dwarf stars</subject><ispartof>The Astrophysical journal, 2019-01, Vol.871 (1), p.38</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</citedby><cites>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</cites><orcidid>0000-0002-3680-2684 ; 0000-0003-4175-8881 ; 0000-0002-7132-418X ; 0000-0002-4086-3180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Kremer, Kyle</creatorcontrib><creatorcontrib>Chatterjee, Sourav</creatorcontrib><creatorcontrib>Ye, Claire S.</creatorcontrib><creatorcontrib>Rodriguez, Carl L.</creatorcontrib><creatorcontrib>Rasio, Frederic A.</creatorcontrib><title>How Initial Size Governs Core Collapse in Globular Clusters</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Companion stars</subject><subject>Computer simulation</subject><subject>Globular clusters</subject><subject>globular clusters: general</subject><subject>Initial conditions</subject><subject>Main sequence stars</subject><subject>Mapping</subject><subject>methods: numerical</subject><subject>Milky Way</subject><subject>Star clusters</subject><subject>stars: black holes</subject><subject>stars: kinematics and dynamics</subject><subject>White dwarf stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwE9Wpc0SdPgScrcBgMPKngLafcCHbGpSavoX29LRS96eeGF7_d78CF0Tsk1y7lcUMHyhDMhF8bYjGcHaPbzdYhmhBCeZEw-H6OTGPfjmio1Qzdr_443Td3VxuGH-hPwyr9BaCIufIBhOGfaCLhu8Mr5sncm4ML1sYMQT9GRNS7C2fc7R093y8dinWzvV5vidptUnIsusUwSqZQVFZHCAhApKyMNtWlWAVhBK2XLDFjJKZelIozsZAUlhVLshKGKzdHF1NsG_9pD7PTe96EZTuqUZSLPUyXIQJGJqoKPMYDVbahfTPjQlOhRkR596NGHnhQNkcspUvv2t9O0e51LqumQ0u3ODtjVH9i_rV98WnOX</recordid><startdate>20190120</startdate><enddate>20190120</enddate><creator>Kremer, Kyle</creator><creator>Chatterjee, Sourav</creator><creator>Ye, Claire S.</creator><creator>Rodriguez, Carl L.</creator><creator>Rasio, Frederic A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3680-2684</orcidid><orcidid>https://orcid.org/0000-0003-4175-8881</orcidid><orcidid>https://orcid.org/0000-0002-7132-418X</orcidid><orcidid>https://orcid.org/0000-0002-4086-3180</orcidid></search><sort><creationdate>20190120</creationdate><title>How Initial Size Governs Core Collapse in Globular Clusters</title><author>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Companion stars</topic><topic>Computer simulation</topic><topic>Globular clusters</topic><topic>globular clusters: general</topic><topic>Initial conditions</topic><topic>Main sequence stars</topic><topic>Mapping</topic><topic>methods: numerical</topic><topic>Milky Way</topic><topic>Star clusters</topic><topic>stars: black holes</topic><topic>stars: kinematics and dynamics</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Kyle</creatorcontrib><creatorcontrib>Chatterjee, Sourav</creatorcontrib><creatorcontrib>Ye, Claire S.</creatorcontrib><creatorcontrib>Rodriguez, Carl L.</creatorcontrib><creatorcontrib>Rasio, Frederic A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Kyle</au><au>Chatterjee, Sourav</au><au>Ye, Claire S.</au><au>Rodriguez, Carl L.</au><au>Rasio, Frederic A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Initial Size Governs Core Collapse in Globular Clusters</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-01-20</date><risdate>2019</risdate><volume>871</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaf646</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3680-2684</orcidid><orcidid>https://orcid.org/0000-0003-4175-8881</orcidid><orcidid>https://orcid.org/0000-0002-7132-418X</orcidid><orcidid>https://orcid.org/0000-0002-4086-3180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-01, Vol.871 (1), p.38
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365882950
source Freely available EZB journals
subjects Astronomical models
Astrophysics
Black holes
Companion stars
Computer simulation
Globular clusters
globular clusters: general
Initial conditions
Main sequence stars
Mapping
methods: numerical
Milky Way
Star clusters
stars: black holes
stars: kinematics and dynamics
White dwarf stars
title How Initial Size Governs Core Collapse in Globular Clusters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T02%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Initial%20Size%20Governs%20Core%20Collapse%20in%20Globular%20Clusters&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kremer,%20Kyle&rft.date=2019-01-20&rft.volume=871&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaf646&rft_dat=%3Cproquest_iop_j%3E2365882950%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365882950&rft_id=info:pmid/&rfr_iscdi=true