Loading…
How Initial Size Governs Core Collapse in Globular Clusters
Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarka...
Saved in:
Published in: | The Astrophysical journal 2019-01, Vol.871 (1), p.38 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193 |
container_end_page | |
container_issue | 1 |
container_start_page | 38 |
container_title | The Astrophysical journal |
container_volume | 871 |
creator | Kremer, Kyle Chatterjee, Sourav Ye, Claire S. Rodriguez, Carl L. Rasio, Frederic A. |
description | Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants. |
doi_str_mv | 10.3847/1538-4357/aaf646 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365882950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365882950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwE9Wpc0SdPgScrcBgMPKngLafcCHbGpSavoX29LRS96eeGF7_d78CF0Tsk1y7lcUMHyhDMhF8bYjGcHaPbzdYhmhBCeZEw-H6OTGPfjmio1Qzdr_443Td3VxuGH-hPwyr9BaCIufIBhOGfaCLhu8Mr5sncm4ML1sYMQT9GRNS7C2fc7R093y8dinWzvV5vidptUnIsusUwSqZQVFZHCAhApKyMNtWlWAVhBK2XLDFjJKZelIozsZAUlhVLshKGKzdHF1NsG_9pD7PTe96EZTuqUZSLPUyXIQJGJqoKPMYDVbahfTPjQlOhRkR596NGHnhQNkcspUvv2t9O0e51LqumQ0u3ODtjVH9i_rV98WnOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365882950</pqid></control><display><type>article</type><title>How Initial Size Governs Core Collapse in Globular Clusters</title><source>Freely available EZB journals</source><creator>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</creator><creatorcontrib>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</creatorcontrib><description>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaf646</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Black holes ; Companion stars ; Computer simulation ; Globular clusters ; globular clusters: general ; Initial conditions ; Main sequence stars ; Mapping ; methods: numerical ; Milky Way ; Star clusters ; stars: black holes ; stars: kinematics and dynamics ; White dwarf stars</subject><ispartof>The Astrophysical journal, 2019-01, Vol.871 (1), p.38</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</citedby><cites>FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</cites><orcidid>0000-0002-3680-2684 ; 0000-0003-4175-8881 ; 0000-0002-7132-418X ; 0000-0002-4086-3180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Kremer, Kyle</creatorcontrib><creatorcontrib>Chatterjee, Sourav</creatorcontrib><creatorcontrib>Ye, Claire S.</creatorcontrib><creatorcontrib>Rodriguez, Carl L.</creatorcontrib><creatorcontrib>Rasio, Frederic A.</creatorcontrib><title>How Initial Size Governs Core Collapse in Globular Clusters</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Companion stars</subject><subject>Computer simulation</subject><subject>Globular clusters</subject><subject>globular clusters: general</subject><subject>Initial conditions</subject><subject>Main sequence stars</subject><subject>Mapping</subject><subject>methods: numerical</subject><subject>Milky Way</subject><subject>Star clusters</subject><subject>stars: black holes</subject><subject>stars: kinematics and dynamics</subject><subject>White dwarf stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwE9Wpc0SdPgScrcBgMPKngLafcCHbGpSavoX29LRS96eeGF7_d78CF0Tsk1y7lcUMHyhDMhF8bYjGcHaPbzdYhmhBCeZEw-H6OTGPfjmio1Qzdr_443Td3VxuGH-hPwyr9BaCIufIBhOGfaCLhu8Mr5sncm4ML1sYMQT9GRNS7C2fc7R093y8dinWzvV5vidptUnIsusUwSqZQVFZHCAhApKyMNtWlWAVhBK2XLDFjJKZelIozsZAUlhVLshKGKzdHF1NsG_9pD7PTe96EZTuqUZSLPUyXIQJGJqoKPMYDVbahfTPjQlOhRkR596NGHnhQNkcspUvv2t9O0e51LqumQ0u3ODtjVH9i_rV98WnOX</recordid><startdate>20190120</startdate><enddate>20190120</enddate><creator>Kremer, Kyle</creator><creator>Chatterjee, Sourav</creator><creator>Ye, Claire S.</creator><creator>Rodriguez, Carl L.</creator><creator>Rasio, Frederic A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3680-2684</orcidid><orcidid>https://orcid.org/0000-0003-4175-8881</orcidid><orcidid>https://orcid.org/0000-0002-7132-418X</orcidid><orcidid>https://orcid.org/0000-0002-4086-3180</orcidid></search><sort><creationdate>20190120</creationdate><title>How Initial Size Governs Core Collapse in Globular Clusters</title><author>Kremer, Kyle ; Chatterjee, Sourav ; Ye, Claire S. ; Rodriguez, Carl L. ; Rasio, Frederic A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Companion stars</topic><topic>Computer simulation</topic><topic>Globular clusters</topic><topic>globular clusters: general</topic><topic>Initial conditions</topic><topic>Main sequence stars</topic><topic>Mapping</topic><topic>methods: numerical</topic><topic>Milky Way</topic><topic>Star clusters</topic><topic>stars: black holes</topic><topic>stars: kinematics and dynamics</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Kyle</creatorcontrib><creatorcontrib>Chatterjee, Sourav</creatorcontrib><creatorcontrib>Ye, Claire S.</creatorcontrib><creatorcontrib>Rodriguez, Carl L.</creatorcontrib><creatorcontrib>Rasio, Frederic A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Kyle</au><au>Chatterjee, Sourav</au><au>Ye, Claire S.</au><au>Rodriguez, Carl L.</au><au>Rasio, Frederic A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Initial Size Governs Core Collapse in Globular Clusters</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-01-20</date><risdate>2019</risdate><volume>871</volume><issue>1</issue><spage>38</spage><pages>38-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Hénon-type Monte Carlo code, CMC, to explore initial cluster parameters that map into this bimodality. Remarkably, we find that by varying the initial size of clusters (specified in our initial conditions in terms of the initial virial radius, rv) within a relatively narrow range consistent with the measured radii of young star clusters in the local universe (rv 0.5-5 pc), our models reproduce the variety of present-day cluster properties. Furthermore, we show that stellar-mass black holes (BHs) play an intimate role in this mapping from initial conditions to the present-day structural features of GCs. We identify "best-fit" models for three GCs with known observed BH candidates, NGC 3201, M22, and M10, and show that these clusters harbor populations of ∼50-100 stellar-mass BHs at present. As an alternative case, we also compare our models to the core-collapsed cluster NGC 6752 and show that this cluster likely contains few BHs at present. Additionally, we explore the formation of BH binaries in GCs and demonstrate that these systems form naturally in our models in both detached and mass-transferring configurations with a variety of companion stellar types, including low-mass main-sequence stars, white dwarfs, and sub-subgiants.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaf646</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3680-2684</orcidid><orcidid>https://orcid.org/0000-0003-4175-8881</orcidid><orcidid>https://orcid.org/0000-0002-7132-418X</orcidid><orcidid>https://orcid.org/0000-0002-4086-3180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-01, Vol.871 (1), p.38 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365882950 |
source | Freely available EZB journals |
subjects | Astronomical models Astrophysics Black holes Companion stars Computer simulation Globular clusters globular clusters: general Initial conditions Main sequence stars Mapping methods: numerical Milky Way Star clusters stars: black holes stars: kinematics and dynamics White dwarf stars |
title | How Initial Size Governs Core Collapse in Globular Clusters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T02%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Initial%20Size%20Governs%20Core%20Collapse%20in%20Globular%20Clusters&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kremer,%20Kyle&rft.date=2019-01-20&rft.volume=871&rft.issue=1&rft.spage=38&rft.pages=38-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaf646&rft_dat=%3Cproquest_iop_j%3E2365882950%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-f370799f5c075fee077ca7a1f26ceef51c9fb6e3b4147b9030d7ceb1eb5d5a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365882950&rft_id=info:pmid/&rfr_iscdi=true |