Loading…

Can a Machine Learn the Outcome of Planetary Collisions?

Planetary-scale collisions are common during the last stages of formation of solid planets, including the solar system terrestrial planets. The problem of growing planets has been divided into studying the gravitational interaction of embryos relevant on million year timescales and treated with N-bo...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-09, Vol.882 (1), p.35
Main Authors: Valencia, Diana, Paracha, Emaad, Jackson, Alan P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43
cites cdi_FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43
container_end_page
container_issue 1
container_start_page 35
container_title The Astrophysical journal
container_volume 882
creator Valencia, Diana
Paracha, Emaad
Jackson, Alan P.
description Planetary-scale collisions are common during the last stages of formation of solid planets, including the solar system terrestrial planets. The problem of growing planets has been divided into studying the gravitational interaction of embryos relevant on million year timescales and treated with N-body codes and the collision between objects with a timescale of hours to days and treated with smoothed-particle hydrodynamics. These are now being coupled with simple parameterized models. We set out to investigate if machine-learning techniques can offer a better solution by predicting the outcome of collisions that can then be used in N-body simulations. We considered three different supervised machine-learning approaches: gradient boosting regression trees, nested models, and Gaussian processes (GPs). We found that the former produced the best results, and that it was slightly surpassed by ensembling different algorithms. With GPs, we found the regions of parameter space that may yield the most information to machine-learning algorithms. Thus, we suggest new smoothed-particle hydrodynamics calculations to focus first on mass ratios 0.5.
doi_str_mv 10.3847/1538-4357/ab2bfb
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365901044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365901044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFfvHgNerZuvJu1JpPgFK-tBwVuYthO2S7dZk-7B_96Wip48DTO89-bxI-SSsxuZK7PkmcxTJTOzhEpUrjoiye_pmCSMMZVqaT5OyVmM22kVRZGQvISeAn2BetP2SFcIoafDBun6MNR-h9Q7-tpBjwOEL1r6rmtj6_t4e05OHHQRL37mgrw_3L-VT-lq_fhc3q3SWnE9pCBrCQ4My1XeFKZwiDo3momGNboRqBpTVRoZOKGAQ8Y1y4TEzChdS4lKLsjVnLsP_vOAcbBbfwj9-NIKqbOCcaYmFZtVdfAxBnR2H9rdWNlyZic-doJhJxh25jNarmdL6_d_mf_KvwHFNGWm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365901044</pqid></control><display><type>article</type><title>Can a Machine Learn the Outcome of Planetary Collisions?</title><source>EZB Electronic Journals Library</source><creator>Valencia, Diana ; Paracha, Emaad ; Jackson, Alan P.</creator><creatorcontrib>Valencia, Diana ; Paracha, Emaad ; Jackson, Alan P.</creatorcontrib><description>Planetary-scale collisions are common during the last stages of formation of solid planets, including the solar system terrestrial planets. The problem of growing planets has been divided into studying the gravitational interaction of embryos relevant on million year timescales and treated with N-body codes and the collision between objects with a timescale of hours to days and treated with smoothed-particle hydrodynamics. These are now being coupled with simple parameterized models. We set out to investigate if machine-learning techniques can offer a better solution by predicting the outcome of collisions that can then be used in N-body simulations. We considered three different supervised machine-learning approaches: gradient boosting regression trees, nested models, and Gaussian processes (GPs). We found that the former produced the best results, and that it was slightly surpassed by ensembling different algorithms. With GPs, we found the regions of parameter space that may yield the most information to machine-learning algorithms. Thus, we suggest new smoothed-particle hydrodynamics calculations to focus first on mass ratios 0.5.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab2bfb</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Collisions ; Computational fluid dynamics ; Computer simulation ; Embryos ; Fluid flow ; Fluid mechanics ; Gaussian process ; Hydrodynamics ; Machine learning ; Mass ratios ; Planet formation ; Planets ; planets and satellites: formation ; Regression analysis ; Smooth particle hydrodynamics ; Solar system ; Terrestrial environments ; Terrestrial planets</subject><ispartof>The Astrophysical journal, 2019-09, Vol.882 (1), p.35</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43</citedby><cites>FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43</cites><orcidid>0000-0003-3993-4030 ; 0000-0003-4393-9520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Valencia, Diana</creatorcontrib><creatorcontrib>Paracha, Emaad</creatorcontrib><creatorcontrib>Jackson, Alan P.</creatorcontrib><title>Can a Machine Learn the Outcome of Planetary Collisions?</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Planetary-scale collisions are common during the last stages of formation of solid planets, including the solar system terrestrial planets. The problem of growing planets has been divided into studying the gravitational interaction of embryos relevant on million year timescales and treated with N-body codes and the collision between objects with a timescale of hours to days and treated with smoothed-particle hydrodynamics. These are now being coupled with simple parameterized models. We set out to investigate if machine-learning techniques can offer a better solution by predicting the outcome of collisions that can then be used in N-body simulations. We considered three different supervised machine-learning approaches: gradient boosting regression trees, nested models, and Gaussian processes (GPs). We found that the former produced the best results, and that it was slightly surpassed by ensembling different algorithms. With GPs, we found the regions of parameter space that may yield the most information to machine-learning algorithms. Thus, we suggest new smoothed-particle hydrodynamics calculations to focus first on mass ratios 0.5.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Collisions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Embryos</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Gaussian process</subject><subject>Hydrodynamics</subject><subject>Machine learning</subject><subject>Mass ratios</subject><subject>Planet formation</subject><subject>Planets</subject><subject>planets and satellites: formation</subject><subject>Regression analysis</subject><subject>Smooth particle hydrodynamics</subject><subject>Solar system</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMoWFfvHgNerZuvJu1JpPgFK-tBwVuYthO2S7dZk-7B_96Wip48DTO89-bxI-SSsxuZK7PkmcxTJTOzhEpUrjoiye_pmCSMMZVqaT5OyVmM22kVRZGQvISeAn2BetP2SFcIoafDBun6MNR-h9Q7-tpBjwOEL1r6rmtj6_t4e05OHHQRL37mgrw_3L-VT-lq_fhc3q3SWnE9pCBrCQ4My1XeFKZwiDo3momGNboRqBpTVRoZOKGAQ8Y1y4TEzChdS4lKLsjVnLsP_vOAcbBbfwj9-NIKqbOCcaYmFZtVdfAxBnR2H9rdWNlyZic-doJhJxh25jNarmdL6_d_mf_KvwHFNGWm</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Valencia, Diana</creator><creator>Paracha, Emaad</creator><creator>Jackson, Alan P.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3993-4030</orcidid><orcidid>https://orcid.org/0000-0003-4393-9520</orcidid></search><sort><creationdate>20190901</creationdate><title>Can a Machine Learn the Outcome of Planetary Collisions?</title><author>Valencia, Diana ; Paracha, Emaad ; Jackson, Alan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Collisions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Embryos</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Gaussian process</topic><topic>Hydrodynamics</topic><topic>Machine learning</topic><topic>Mass ratios</topic><topic>Planet formation</topic><topic>Planets</topic><topic>planets and satellites: formation</topic><topic>Regression analysis</topic><topic>Smooth particle hydrodynamics</topic><topic>Solar system</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valencia, Diana</creatorcontrib><creatorcontrib>Paracha, Emaad</creatorcontrib><creatorcontrib>Jackson, Alan P.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valencia, Diana</au><au>Paracha, Emaad</au><au>Jackson, Alan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can a Machine Learn the Outcome of Planetary Collisions?</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>882</volume><issue>1</issue><spage>35</spage><pages>35-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Planetary-scale collisions are common during the last stages of formation of solid planets, including the solar system terrestrial planets. The problem of growing planets has been divided into studying the gravitational interaction of embryos relevant on million year timescales and treated with N-body codes and the collision between objects with a timescale of hours to days and treated with smoothed-particle hydrodynamics. These are now being coupled with simple parameterized models. We set out to investigate if machine-learning techniques can offer a better solution by predicting the outcome of collisions that can then be used in N-body simulations. We considered three different supervised machine-learning approaches: gradient boosting regression trees, nested models, and Gaussian processes (GPs). We found that the former produced the best results, and that it was slightly surpassed by ensembling different algorithms. With GPs, we found the regions of parameter space that may yield the most information to machine-learning algorithms. Thus, we suggest new smoothed-particle hydrodynamics calculations to focus first on mass ratios 0.5.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab2bfb</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3993-4030</orcidid><orcidid>https://orcid.org/0000-0003-4393-9520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2019-09, Vol.882 (1), p.35
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2365901044
source EZB Electronic Journals Library
subjects Algorithms
Astrophysics
Collisions
Computational fluid dynamics
Computer simulation
Embryos
Fluid flow
Fluid mechanics
Gaussian process
Hydrodynamics
Machine learning
Mass ratios
Planet formation
Planets
planets and satellites: formation
Regression analysis
Smooth particle hydrodynamics
Solar system
Terrestrial environments
Terrestrial planets
title Can a Machine Learn the Outcome of Planetary Collisions?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20a%20Machine%20Learn%20the%20Outcome%20of%20Planetary%20Collisions?&rft.jtitle=The%20Astrophysical%20journal&rft.au=Valencia,%20Diana&rft.date=2019-09-01&rft.volume=882&rft.issue=1&rft.spage=35&rft.pages=35-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab2bfb&rft_dat=%3Cproquest_cross%3E2365901044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-a3c3afa70848d979fee687602d0d6d2e4d7bb6e0af24a1a5160523e5746c33e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365901044&rft_id=info:pmid/&rfr_iscdi=true