Loading…
A CLT in Stein's distance for generalized Wishart matrices and higher order tensors
We study the central limit theorem for sums of independent tensor powers, \(\frac{1}{\sqrt{d}}\sum\limits_{i=1}^d X_i^{\otimes p}\). We focus on the high-dimensional regime where \(X_i \in \mathbb{R}^n\) and \(n\) may scale with \(d\). Our main result is a proposed threshold for convergence. Specifi...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mikulincer, Dan |
description | We study the central limit theorem for sums of independent tensor powers, \(\frac{1}{\sqrt{d}}\sum\limits_{i=1}^d X_i^{\otimes p}\). We focus on the high-dimensional regime where \(X_i \in \mathbb{R}^n\) and \(n\) may scale with \(d\). Our main result is a proposed threshold for convergence. Specifically, we show that, under some regularity assumption, if \(n^{2p-1}\gg d\), then the normalized sum converges to a Gaussian. The results apply, among others, to symmetric uniform log-concave measures and to product measures. This generalizes several results found in the literature. Our main technique is a novel application of optimal transport to Stein's method which accounts for the low dimensional structure which is inherent in \(X_i^{\otimes p}\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2365917243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365917243</sourcerecordid><originalsourceid>FETCH-proquest_journals_23659172433</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_cMHBSahJHzpKURzcWnAsobltU2qi98bFr9fBD3A5ZzhnJiKp1G67T6VciJh5TJJE5oXMMhWJ6gjltQbroApo3YbBWA7atQidJ-jRIenJvtHAzfKgKcBdB7ItMmhnYLD9gASezJcBHXvilZh3emKMf16K9flUl5ftg_zzhRya0b_IfVMjVZ4ddoVMlfrv-gCuJj9u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365917243</pqid></control><display><type>article</type><title>A CLT in Stein's distance for generalized Wishart matrices and higher order tensors</title><source>ProQuest - Publicly Available Content Database</source><creator>Mikulincer, Dan</creator><creatorcontrib>Mikulincer, Dan</creatorcontrib><description>We study the central limit theorem for sums of independent tensor powers, \(\frac{1}{\sqrt{d}}\sum\limits_{i=1}^d X_i^{\otimes p}\). We focus on the high-dimensional regime where \(X_i \in \mathbb{R}^n\) and \(n\) may scale with \(d\). Our main result is a proposed threshold for convergence. Specifically, we show that, under some regularity assumption, if \(n^{2p-1}\gg d\), then the normalized sum converges to a Gaussian. The results apply, among others, to symmetric uniform log-concave measures and to product measures. This generalizes several results found in the literature. Our main technique is a novel application of optimal transport to Stein's method which accounts for the low dimensional structure which is inherent in \(X_i^{\otimes p}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Mathematical analysis ; Tensors</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2365917243?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mikulincer, Dan</creatorcontrib><title>A CLT in Stein's distance for generalized Wishart matrices and higher order tensors</title><title>arXiv.org</title><description>We study the central limit theorem for sums of independent tensor powers, \(\frac{1}{\sqrt{d}}\sum\limits_{i=1}^d X_i^{\otimes p}\). We focus on the high-dimensional regime where \(X_i \in \mathbb{R}^n\) and \(n\) may scale with \(d\). Our main result is a proposed threshold for convergence. Specifically, we show that, under some regularity assumption, if \(n^{2p-1}\gg d\), then the normalized sum converges to a Gaussian. The results apply, among others, to symmetric uniform log-concave measures and to product measures. This generalizes several results found in the literature. Our main technique is a novel application of optimal transport to Stein's method which accounts for the low dimensional structure which is inherent in \(X_i^{\otimes p}\).</description><subject>Convergence</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsKwjAUQIMgWLT_cMHBSahJHzpKURzcWnAsobltU2qi98bFr9fBD3A5ZzhnJiKp1G67T6VciJh5TJJE5oXMMhWJ6gjltQbroApo3YbBWA7atQidJ-jRIenJvtHAzfKgKcBdB7ItMmhnYLD9gASezJcBHXvilZh3emKMf16K9flUl5ftg_zzhRya0b_IfVMjVZ4ddoVMlfrv-gCuJj9u</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Mikulincer, Dan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201104</creationdate><title>A CLT in Stein's distance for generalized Wishart matrices and higher order tensors</title><author>Mikulincer, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23659172433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Mikulincer, Dan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikulincer, Dan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A CLT in Stein's distance for generalized Wishart matrices and higher order tensors</atitle><jtitle>arXiv.org</jtitle><date>2020-11-04</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the central limit theorem for sums of independent tensor powers, \(\frac{1}{\sqrt{d}}\sum\limits_{i=1}^d X_i^{\otimes p}\). We focus on the high-dimensional regime where \(X_i \in \mathbb{R}^n\) and \(n\) may scale with \(d\). Our main result is a proposed threshold for convergence. Specifically, we show that, under some regularity assumption, if \(n^{2p-1}\gg d\), then the normalized sum converges to a Gaussian. The results apply, among others, to symmetric uniform log-concave measures and to product measures. This generalizes several results found in the literature. Our main technique is a novel application of optimal transport to Stein's method which accounts for the low dimensional structure which is inherent in \(X_i^{\otimes p}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2365917243 |
source | ProQuest - Publicly Available Content Database |
subjects | Convergence Mathematical analysis Tensors |
title | A CLT in Stein's distance for generalized Wishart matrices and higher order tensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20CLT%20in%20Stein's%20distance%20for%20generalized%20Wishart%20matrices%20and%20higher%20order%20tensors&rft.jtitle=arXiv.org&rft.au=Mikulincer,%20Dan&rft.date=2020-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2365917243%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23659172433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365917243&rft_id=info:pmid/&rfr_iscdi=true |