Loading…
An X-Ray Imaging Survey of Quasar Jets: The Complete Survey
We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent...
Saved in:
Published in: | The Astrophysical journal 2018-03, Vol.856 (1), p.66 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683 |
container_end_page | |
container_issue | 1 |
container_start_page | 66 |
container_title | The Astrophysical journal |
container_volume | 856 |
creator | Marshall, H. L. Gelbord, J. M. Worrall, D. M. Birkinshaw, M. Schwartz, D. A. Jauncey, D. L. Griffiths, G. Murphy, D. W. Lovell, J. E. J. Perlman, E. S. Godfrey, L. |
description | We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets. |
doi_str_mv | 10.3847/1538-4357/aaaf66 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365919003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365919003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRMFbvHhf0aOxudrMfeirBj0pB1Aq9LdNkt7a0TdxNhP57E1L0oodhmOGZd-BB6JySa6a4HNKUqZizVA4BwAlxgKKf1SGKCCE8FkzOjtFJCKtuTLSO0O1oi2fxK-zweAOL5XaB3xr_ZXe4dPilgQAeP9k63ODph8VZuanWtrZ75hQdOVgHe7bvA_R-fzfNHuPJ88M4G03inPO0jnOntJKWUKklSRQtWMEVB2qTlIg5tbmTTDmZA3WsLZB6zhgVznHNrRKKDdBFn1v58rOxoTarsvHb9qVJmEg11YSwliI9lfsyBG-dqfxyA35nKDGdItP5MJ0P0ytqTy77k2VZ_WZCtTIqFYYaIUxVuBa7-gP7N_Ub51xyNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365919003</pqid></control><display><type>article</type><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><source>EZB Electronic Journals Library</source><creator>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</creator><creatorcontrib>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</creatorcontrib><description>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaaf66</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cosmic microwave background ; Deceleration ; Dispersion ; Elastic scattering ; Emission ; Fluxes ; galaxies: active ; galaxies: jets ; Jets ; Model testing ; Normal distribution ; Photons ; Polls & surveys ; Power law ; Quasars ; quasars: general ; Red shift ; Spectra ; X ray imagery ; X-ray emissions ; X-rays</subject><ispartof>The Astrophysical journal, 2018-03, Vol.856 (1), p.66</ispartof><rights>2018. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</citedby><cites>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</cites><orcidid>0000-0002-6492-1293 ; 0000-0002-1516-0336 ; 0000-0002-1858-277X ; 0000-0001-8252-4753 ; 0000-0002-3099-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marshall, H. L.</creatorcontrib><creatorcontrib>Gelbord, J. M.</creatorcontrib><creatorcontrib>Worrall, D. M.</creatorcontrib><creatorcontrib>Birkinshaw, M.</creatorcontrib><creatorcontrib>Schwartz, D. A.</creatorcontrib><creatorcontrib>Jauncey, D. L.</creatorcontrib><creatorcontrib>Griffiths, G.</creatorcontrib><creatorcontrib>Murphy, D. W.</creatorcontrib><creatorcontrib>Lovell, J. E. J.</creatorcontrib><creatorcontrib>Perlman, E. S.</creatorcontrib><creatorcontrib>Godfrey, L.</creatorcontrib><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</description><subject>Astrophysics</subject><subject>Cosmic microwave background</subject><subject>Deceleration</subject><subject>Dispersion</subject><subject>Elastic scattering</subject><subject>Emission</subject><subject>Fluxes</subject><subject>galaxies: active</subject><subject>galaxies: jets</subject><subject>Jets</subject><subject>Model testing</subject><subject>Normal distribution</subject><subject>Photons</subject><subject>Polls & surveys</subject><subject>Power law</subject><subject>Quasars</subject><subject>quasars: general</subject><subject>Red shift</subject><subject>Spectra</subject><subject>X ray imagery</subject><subject>X-ray emissions</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRMFbvHhf0aOxudrMfeirBj0pB1Aq9LdNkt7a0TdxNhP57E1L0oodhmOGZd-BB6JySa6a4HNKUqZizVA4BwAlxgKKf1SGKCCE8FkzOjtFJCKtuTLSO0O1oi2fxK-zweAOL5XaB3xr_ZXe4dPilgQAeP9k63ODph8VZuanWtrZ75hQdOVgHe7bvA_R-fzfNHuPJ88M4G03inPO0jnOntJKWUKklSRQtWMEVB2qTlIg5tbmTTDmZA3WsLZB6zhgVznHNrRKKDdBFn1v58rOxoTarsvHb9qVJmEg11YSwliI9lfsyBG-dqfxyA35nKDGdItP5MJ0P0ytqTy77k2VZ_WZCtTIqFYYaIUxVuBa7-gP7N_Ub51xyNg</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Marshall, H. L.</creator><creator>Gelbord, J. M.</creator><creator>Worrall, D. M.</creator><creator>Birkinshaw, M.</creator><creator>Schwartz, D. A.</creator><creator>Jauncey, D. L.</creator><creator>Griffiths, G.</creator><creator>Murphy, D. W.</creator><creator>Lovell, J. E. J.</creator><creator>Perlman, E. S.</creator><creator>Godfrey, L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6492-1293</orcidid><orcidid>https://orcid.org/0000-0002-1516-0336</orcidid><orcidid>https://orcid.org/0000-0002-1858-277X</orcidid><orcidid>https://orcid.org/0000-0001-8252-4753</orcidid><orcidid>https://orcid.org/0000-0002-3099-1664</orcidid></search><sort><creationdate>20180320</creationdate><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><author>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Cosmic microwave background</topic><topic>Deceleration</topic><topic>Dispersion</topic><topic>Elastic scattering</topic><topic>Emission</topic><topic>Fluxes</topic><topic>galaxies: active</topic><topic>galaxies: jets</topic><topic>Jets</topic><topic>Model testing</topic><topic>Normal distribution</topic><topic>Photons</topic><topic>Polls & surveys</topic><topic>Power law</topic><topic>Quasars</topic><topic>quasars: general</topic><topic>Red shift</topic><topic>Spectra</topic><topic>X ray imagery</topic><topic>X-ray emissions</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, H. L.</creatorcontrib><creatorcontrib>Gelbord, J. M.</creatorcontrib><creatorcontrib>Worrall, D. M.</creatorcontrib><creatorcontrib>Birkinshaw, M.</creatorcontrib><creatorcontrib>Schwartz, D. A.</creatorcontrib><creatorcontrib>Jauncey, D. L.</creatorcontrib><creatorcontrib>Griffiths, G.</creatorcontrib><creatorcontrib>Murphy, D. W.</creatorcontrib><creatorcontrib>Lovell, J. E. J.</creatorcontrib><creatorcontrib>Perlman, E. S.</creatorcontrib><creatorcontrib>Godfrey, L.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, H. L.</au><au>Gelbord, J. M.</au><au>Worrall, D. M.</au><au>Birkinshaw, M.</au><au>Schwartz, D. A.</au><au>Jauncey, D. L.</au><au>Griffiths, G.</au><au>Murphy, D. W.</au><au>Lovell, J. E. J.</au><au>Perlman, E. S.</au><au>Godfrey, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>856</volume><issue>1</issue><spage>66</spage><pages>66-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaaf66</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6492-1293</orcidid><orcidid>https://orcid.org/0000-0002-1516-0336</orcidid><orcidid>https://orcid.org/0000-0002-1858-277X</orcidid><orcidid>https://orcid.org/0000-0001-8252-4753</orcidid><orcidid>https://orcid.org/0000-0002-3099-1664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2018-03, Vol.856 (1), p.66 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2365919003 |
source | EZB Electronic Journals Library |
subjects | Astrophysics Cosmic microwave background Deceleration Dispersion Elastic scattering Emission Fluxes galaxies: active galaxies: jets Jets Model testing Normal distribution Photons Polls & surveys Power law Quasars quasars: general Red shift Spectra X ray imagery X-ray emissions X-rays |
title | An X-Ray Imaging Survey of Quasar Jets: The Complete Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20X-Ray%20Imaging%20Survey%20of%20Quasar%20Jets:%20The%20Complete%20Survey&rft.jtitle=The%20Astrophysical%20journal&rft.au=Marshall,%20H.%20L.&rft.date=2018-03-20&rft.volume=856&rft.issue=1&rft.spage=66&rft.pages=66-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaaf66&rft_dat=%3Cproquest_iop_j%3E2365919003%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365919003&rft_id=info:pmid/&rfr_iscdi=true |