Loading…

An X-Ray Imaging Survey of Quasar Jets: The Complete Survey

We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2018-03, Vol.856 (1), p.66
Main Authors: Marshall, H. L., Gelbord, J. M., Worrall, D. M., Birkinshaw, M., Schwartz, D. A., Jauncey, D. L., Griffiths, G., Murphy, D. W., Lovell, J. E. J., Perlman, E. S., Godfrey, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683
cites cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683
container_end_page
container_issue 1
container_start_page 66
container_title The Astrophysical journal
container_volume 856
creator Marshall, H. L.
Gelbord, J. M.
Worrall, D. M.
Birkinshaw, M.
Schwartz, D. A.
Jauncey, D. L.
Griffiths, G.
Murphy, D. W.
Lovell, J. E. J.
Perlman, E. S.
Godfrey, L.
description We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.
doi_str_mv 10.3847/1538-4357/aaaf66
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2365919003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365919003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRMFbvHhf0aOxudrMfeirBj0pB1Aq9LdNkt7a0TdxNhP57E1L0oodhmOGZd-BB6JySa6a4HNKUqZizVA4BwAlxgKKf1SGKCCE8FkzOjtFJCKtuTLSO0O1oi2fxK-zweAOL5XaB3xr_ZXe4dPilgQAeP9k63ODph8VZuanWtrZ75hQdOVgHe7bvA_R-fzfNHuPJ88M4G03inPO0jnOntJKWUKklSRQtWMEVB2qTlIg5tbmTTDmZA3WsLZB6zhgVznHNrRKKDdBFn1v58rOxoTarsvHb9qVJmEg11YSwliI9lfsyBG-dqfxyA35nKDGdItP5MJ0P0ytqTy77k2VZ_WZCtTIqFYYaIUxVuBa7-gP7N_Ub51xyNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365919003</pqid></control><display><type>article</type><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><source>EZB Electronic Journals Library</source><creator>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</creator><creatorcontrib>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</creatorcontrib><description>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aaaf66</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cosmic microwave background ; Deceleration ; Dispersion ; Elastic scattering ; Emission ; Fluxes ; galaxies: active ; galaxies: jets ; Jets ; Model testing ; Normal distribution ; Photons ; Polls &amp; surveys ; Power law ; Quasars ; quasars: general ; Red shift ; Spectra ; X ray imagery ; X-ray emissions ; X-rays</subject><ispartof>The Astrophysical journal, 2018-03, Vol.856 (1), p.66</ispartof><rights>2018. The American Astronomical Society.</rights><rights>Copyright IOP Publishing Mar 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</citedby><cites>FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</cites><orcidid>0000-0002-6492-1293 ; 0000-0002-1516-0336 ; 0000-0002-1858-277X ; 0000-0001-8252-4753 ; 0000-0002-3099-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marshall, H. L.</creatorcontrib><creatorcontrib>Gelbord, J. M.</creatorcontrib><creatorcontrib>Worrall, D. M.</creatorcontrib><creatorcontrib>Birkinshaw, M.</creatorcontrib><creatorcontrib>Schwartz, D. A.</creatorcontrib><creatorcontrib>Jauncey, D. L.</creatorcontrib><creatorcontrib>Griffiths, G.</creatorcontrib><creatorcontrib>Murphy, D. W.</creatorcontrib><creatorcontrib>Lovell, J. E. J.</creatorcontrib><creatorcontrib>Perlman, E. S.</creatorcontrib><creatorcontrib>Godfrey, L.</creatorcontrib><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</description><subject>Astrophysics</subject><subject>Cosmic microwave background</subject><subject>Deceleration</subject><subject>Dispersion</subject><subject>Elastic scattering</subject><subject>Emission</subject><subject>Fluxes</subject><subject>galaxies: active</subject><subject>galaxies: jets</subject><subject>Jets</subject><subject>Model testing</subject><subject>Normal distribution</subject><subject>Photons</subject><subject>Polls &amp; surveys</subject><subject>Power law</subject><subject>Quasars</subject><subject>quasars: general</subject><subject>Red shift</subject><subject>Spectra</subject><subject>X ray imagery</subject><subject>X-ray emissions</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRMFbvHhf0aOxudrMfeirBj0pB1Aq9LdNkt7a0TdxNhP57E1L0oodhmOGZd-BB6JySa6a4HNKUqZizVA4BwAlxgKKf1SGKCCE8FkzOjtFJCKtuTLSO0O1oi2fxK-zweAOL5XaB3xr_ZXe4dPilgQAeP9k63ODph8VZuanWtrZ75hQdOVgHe7bvA_R-fzfNHuPJ88M4G03inPO0jnOntJKWUKklSRQtWMEVB2qTlIg5tbmTTDmZA3WsLZB6zhgVznHNrRKKDdBFn1v58rOxoTarsvHb9qVJmEg11YSwliI9lfsyBG-dqfxyA35nKDGdItP5MJ0P0ytqTy77k2VZ_WZCtTIqFYYaIUxVuBa7-gP7N_Ub51xyNg</recordid><startdate>20180320</startdate><enddate>20180320</enddate><creator>Marshall, H. L.</creator><creator>Gelbord, J. M.</creator><creator>Worrall, D. M.</creator><creator>Birkinshaw, M.</creator><creator>Schwartz, D. A.</creator><creator>Jauncey, D. L.</creator><creator>Griffiths, G.</creator><creator>Murphy, D. W.</creator><creator>Lovell, J. E. J.</creator><creator>Perlman, E. S.</creator><creator>Godfrey, L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6492-1293</orcidid><orcidid>https://orcid.org/0000-0002-1516-0336</orcidid><orcidid>https://orcid.org/0000-0002-1858-277X</orcidid><orcidid>https://orcid.org/0000-0001-8252-4753</orcidid><orcidid>https://orcid.org/0000-0002-3099-1664</orcidid></search><sort><creationdate>20180320</creationdate><title>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</title><author>Marshall, H. L. ; Gelbord, J. M. ; Worrall, D. M. ; Birkinshaw, M. ; Schwartz, D. A. ; Jauncey, D. L. ; Griffiths, G. ; Murphy, D. W. ; Lovell, J. E. J. ; Perlman, E. S. ; Godfrey, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Cosmic microwave background</topic><topic>Deceleration</topic><topic>Dispersion</topic><topic>Elastic scattering</topic><topic>Emission</topic><topic>Fluxes</topic><topic>galaxies: active</topic><topic>galaxies: jets</topic><topic>Jets</topic><topic>Model testing</topic><topic>Normal distribution</topic><topic>Photons</topic><topic>Polls &amp; surveys</topic><topic>Power law</topic><topic>Quasars</topic><topic>quasars: general</topic><topic>Red shift</topic><topic>Spectra</topic><topic>X ray imagery</topic><topic>X-ray emissions</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, H. L.</creatorcontrib><creatorcontrib>Gelbord, J. M.</creatorcontrib><creatorcontrib>Worrall, D. M.</creatorcontrib><creatorcontrib>Birkinshaw, M.</creatorcontrib><creatorcontrib>Schwartz, D. A.</creatorcontrib><creatorcontrib>Jauncey, D. L.</creatorcontrib><creatorcontrib>Griffiths, G.</creatorcontrib><creatorcontrib>Murphy, D. W.</creatorcontrib><creatorcontrib>Lovell, J. E. J.</creatorcontrib><creatorcontrib>Perlman, E. S.</creatorcontrib><creatorcontrib>Godfrey, L.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, H. L.</au><au>Gelbord, J. M.</au><au>Worrall, D. M.</au><au>Birkinshaw, M.</au><au>Schwartz, D. A.</au><au>Jauncey, D. L.</au><au>Griffiths, G.</au><au>Murphy, D. W.</au><au>Lovell, J. E. J.</au><au>Perlman, E. S.</au><au>Godfrey, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An X-Ray Imaging Survey of Quasar Jets: The Complete Survey</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-03-20</date><risdate>2018</risdate><volume>856</volume><issue>1</issue><spage>66</spage><pages>66-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counter-jets were detected. The core spectra are fitted by power-law spectra with a photon index Γx, whose distribution is consistent with a normal distribution, with a mean of 1.61+0.04−0.05 and dispersion of 0.15+0.04−0.03. We show that the distribution of rx, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with a mean of 0.974 0.012 and dispersion of 0.077 0.008. We test the model in which kiloparsec-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jet's relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as (1 + z)3+ . We fit Q ∝ (1 + z)a, finding a = 0.88 0.90, and reject at 99.5% confidence the hypothesis that the average rx depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by a lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kiloparsec-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between parsec and kiloparsec scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kiloparsec-scale jets.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aaaf66</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6492-1293</orcidid><orcidid>https://orcid.org/0000-0002-1516-0336</orcidid><orcidid>https://orcid.org/0000-0002-1858-277X</orcidid><orcidid>https://orcid.org/0000-0001-8252-4753</orcidid><orcidid>https://orcid.org/0000-0002-3099-1664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-03, Vol.856 (1), p.66
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2365919003
source EZB Electronic Journals Library
subjects Astrophysics
Cosmic microwave background
Deceleration
Dispersion
Elastic scattering
Emission
Fluxes
galaxies: active
galaxies: jets
Jets
Model testing
Normal distribution
Photons
Polls & surveys
Power law
Quasars
quasars: general
Red shift
Spectra
X ray imagery
X-ray emissions
X-rays
title An X-Ray Imaging Survey of Quasar Jets: The Complete Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20X-Ray%20Imaging%20Survey%20of%20Quasar%20Jets:%20The%20Complete%20Survey&rft.jtitle=The%20Astrophysical%20journal&rft.au=Marshall,%20H.%20L.&rft.date=2018-03-20&rft.volume=856&rft.issue=1&rft.spage=66&rft.pages=66-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aaaf66&rft_dat=%3Cproquest_iop_j%3E2365919003%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-cf8987e017970281d3d484a1e2506b1ecf738f7ca1f3a1fa79b3316ff494e8683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365919003&rft_id=info:pmid/&rfr_iscdi=true