Loading…

The Effros-Maréchal Topology in the Space of Von Neumann Algebras

New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism...

Full description

Saved in:
Bibliographic Details
Published in:American journal of mathematics 1998-06, Vol.120 (3), p.567-617
Main Authors: Haagerup, Uffe, Winsløw, Carl
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3
cites
container_end_page 617
container_issue 3
container_start_page 567
container_title American journal of mathematics
container_volume 120
creator Haagerup, Uffe
Winsløw, Carl
description New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.
doi_str_mv 10.1353/ajm.1998.0022
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236618255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25098610</jstor_id><sourcerecordid>25098610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</originalsourceid><addsrcrecordid>eNpFkMlOwzAURS0EEmVYskSK2Kd4iKdlqcogFVi0sLUcy24bJXGwk0U_ie_gx3BUVFZPfjq-V-8AcIPgFBFK7nXVTJGUYgohxidggqCAOSOcn4IJTLtcEszPwUWMVXpCDvEEPKy3Nls4F3zMX3X4-TZbXWdr3_nab_bZrs36BKw6bWzmXfbp2-zNDo1u22xWb2wZdLwCZ07X0V7_zUvw8bhYz5_z5fvTy3y2zA3BrM85ptS4wnLnbMGRg0YLjsoCw1JrRDmSjDMrSlpyYYgU3LGSGmI41ZRaa8gluDvkdsF_DTb2qvJDaFOlwoQxJFJBgvIDZNJFMVinurBrdNgrBNVoSSVLarSkRkuJR8fQypq-GaL9z-WyUKtR42hRCgIp42PH7eFPFXsfjgWYQikYguQXMbdy-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236618255</pqid></control><display><type>article</type><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><source>JSTOR</source><creator>Haagerup, Uffe ; Winsløw, Carl</creator><creatorcontrib>Haagerup, Uffe ; Winsløw, Carl</creatorcontrib><description>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.1998.0022</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Algebraic topology ; Hilbert spaces ; Homeomorphism ; Mathematical theorems ; Mathematics ; Topological spaces ; Topological theorems ; Topology ; Von Neumann algebra</subject><ispartof>American journal of mathematics, 1998-06, Vol.120 (3), p.567-617</ispartof><rights>Copyright 1998 The Johns Hopkins University Press</rights><rights>Copyright © 1998 The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25098610$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25098610$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Haagerup, Uffe</creatorcontrib><creatorcontrib>Winsløw, Carl</creatorcontrib><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><title>American journal of mathematics</title><description>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</description><subject>Algebra</subject><subject>Algebraic topology</subject><subject>Hilbert spaces</subject><subject>Homeomorphism</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><subject>Von Neumann algebra</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkMlOwzAURS0EEmVYskSK2Kd4iKdlqcogFVi0sLUcy24bJXGwk0U_ie_gx3BUVFZPfjq-V-8AcIPgFBFK7nXVTJGUYgohxidggqCAOSOcn4IJTLtcEszPwUWMVXpCDvEEPKy3Nls4F3zMX3X4-TZbXWdr3_nab_bZrs36BKw6bWzmXfbp2-zNDo1u22xWb2wZdLwCZ07X0V7_zUvw8bhYz5_z5fvTy3y2zA3BrM85ptS4wnLnbMGRg0YLjsoCw1JrRDmSjDMrSlpyYYgU3LGSGmI41ZRaa8gluDvkdsF_DTb2qvJDaFOlwoQxJFJBgvIDZNJFMVinurBrdNgrBNVoSSVLarSkRkuJR8fQypq-GaL9z-WyUKtR42hRCgIp42PH7eFPFXsfjgWYQikYguQXMbdy-w</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Haagerup, Uffe</creator><creator>Winsløw, Carl</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19980601</creationdate><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><author>Haagerup, Uffe ; Winsløw, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Algebraic topology</topic><topic>Hilbert spaces</topic><topic>Homeomorphism</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haagerup, Uffe</creatorcontrib><creatorcontrib>Winsløw, Carl</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haagerup, Uffe</au><au>Winsløw, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</atitle><jtitle>American journal of mathematics</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>120</volume><issue>3</issue><spage>567</spage><epage>617</epage><pages>567-617</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.1998.0022</doi><tpages>51</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 1998-06, Vol.120 (3), p.567-617
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236618255
source Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection; JSTOR
subjects Algebra
Algebraic topology
Hilbert spaces
Homeomorphism
Mathematical theorems
Mathematics
Topological spaces
Topological theorems
Topology
Von Neumann algebra
title The Effros-Maréchal Topology in the Space of Von Neumann Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effros-Mar%C3%A9chal%20Topology%20in%20the%20Space%20of%20Von%20Neumann%20Algebras&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Haagerup,%20Uffe&rft.date=1998-06-01&rft.volume=120&rft.issue=3&rft.spage=567&rft.epage=617&rft.pages=567-617&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.1998.0022&rft_dat=%3Cjstor_proqu%3E25098610%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=236618255&rft_id=info:pmid/&rft_jstor_id=25098610&rfr_iscdi=true