Loading…
The Effros-Maréchal Topology in the Space of Von Neumann Algebras
New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism...
Saved in:
Published in: | American journal of mathematics 1998-06, Vol.120 (3), p.567-617 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3 |
---|---|
cites | |
container_end_page | 617 |
container_issue | 3 |
container_start_page | 567 |
container_title | American journal of mathematics |
container_volume | 120 |
creator | Haagerup, Uffe Winsløw, Carl |
description | New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given. |
doi_str_mv | 10.1353/ajm.1998.0022 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236618255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25098610</jstor_id><sourcerecordid>25098610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</originalsourceid><addsrcrecordid>eNpFkMlOwzAURS0EEmVYskSK2Kd4iKdlqcogFVi0sLUcy24bJXGwk0U_ie_gx3BUVFZPfjq-V-8AcIPgFBFK7nXVTJGUYgohxidggqCAOSOcn4IJTLtcEszPwUWMVXpCDvEEPKy3Nls4F3zMX3X4-TZbXWdr3_nab_bZrs36BKw6bWzmXfbp2-zNDo1u22xWb2wZdLwCZ07X0V7_zUvw8bhYz5_z5fvTy3y2zA3BrM85ptS4wnLnbMGRg0YLjsoCw1JrRDmSjDMrSlpyYYgU3LGSGmI41ZRaa8gluDvkdsF_DTb2qvJDaFOlwoQxJFJBgvIDZNJFMVinurBrdNgrBNVoSSVLarSkRkuJR8fQypq-GaL9z-WyUKtR42hRCgIp42PH7eFPFXsfjgWYQikYguQXMbdy-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236618255</pqid></control><display><type>article</type><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><source>Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection</source><source>JSTOR</source><creator>Haagerup, Uffe ; Winsløw, Carl</creator><creatorcontrib>Haagerup, Uffe ; Winsløw, Carl</creatorcontrib><description>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.1998.0022</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Algebraic topology ; Hilbert spaces ; Homeomorphism ; Mathematical theorems ; Mathematics ; Topological spaces ; Topological theorems ; Topology ; Von Neumann algebra</subject><ispartof>American journal of mathematics, 1998-06, Vol.120 (3), p.567-617</ispartof><rights>Copyright 1998 The Johns Hopkins University Press</rights><rights>Copyright © 1998 The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25098610$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25098610$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Haagerup, Uffe</creatorcontrib><creatorcontrib>Winsløw, Carl</creatorcontrib><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><title>American journal of mathematics</title><description>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</description><subject>Algebra</subject><subject>Algebraic topology</subject><subject>Hilbert spaces</subject><subject>Homeomorphism</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topology</subject><subject>Von Neumann algebra</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkMlOwzAURS0EEmVYskSK2Kd4iKdlqcogFVi0sLUcy24bJXGwk0U_ie_gx3BUVFZPfjq-V-8AcIPgFBFK7nXVTJGUYgohxidggqCAOSOcn4IJTLtcEszPwUWMVXpCDvEEPKy3Nls4F3zMX3X4-TZbXWdr3_nab_bZrs36BKw6bWzmXfbp2-zNDo1u22xWb2wZdLwCZ07X0V7_zUvw8bhYz5_z5fvTy3y2zA3BrM85ptS4wnLnbMGRg0YLjsoCw1JrRDmSjDMrSlpyYYgU3LGSGmI41ZRaa8gluDvkdsF_DTb2qvJDaFOlwoQxJFJBgvIDZNJFMVinurBrdNgrBNVoSSVLarSkRkuJR8fQypq-GaL9z-WyUKtR42hRCgIp42PH7eFPFXsfjgWYQikYguQXMbdy-w</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Haagerup, Uffe</creator><creator>Winsløw, Carl</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19980601</creationdate><title>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</title><author>Haagerup, Uffe ; Winsløw, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Algebraic topology</topic><topic>Hilbert spaces</topic><topic>Homeomorphism</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topology</topic><topic>Von Neumann algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haagerup, Uffe</creatorcontrib><creatorcontrib>Winsløw, Carl</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haagerup, Uffe</au><au>Winsløw, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effros-Maréchal Topology in the Space of Von Neumann Algebras</atitle><jtitle>American journal of mathematics</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>120</volume><issue>3</issue><spage>567</spage><epage>617</epage><pages>567-617</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>New concepts of limes inferior and limes superior in the space of von Neumann algebras on a fixed Hilbert space are defined, and the topology corresponding to these notions is related to earlier works of Effros and Marechal. A main technical result is that the commutant operation is a homeomorphism on the space of von Neumann algebras with this topology. Further, the topological properties of several classes and types of von Neumann factors (regarded as subspaces) are determined, and also continuity-type results for Tomita-Takesaki theory are proved. Some applications to subfactor theory are given.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.1998.0022</doi><tpages>51</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 1998-06, Vol.120 (3), p.567-617 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236618255 |
source | Project Muse:Jisc Collections:Project MUSE Journals Agreement 2024:Premium Collection; JSTOR |
subjects | Algebra Algebraic topology Hilbert spaces Homeomorphism Mathematical theorems Mathematics Topological spaces Topological theorems Topology Von Neumann algebra |
title | The Effros-Maréchal Topology in the Space of Von Neumann Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effros-Mar%C3%A9chal%20Topology%20in%20the%20Space%20of%20Von%20Neumann%20Algebras&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Haagerup,%20Uffe&rft.date=1998-06-01&rft.volume=120&rft.issue=3&rft.spage=567&rft.epage=617&rft.pages=567-617&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.1998.0022&rft_dat=%3Cjstor_proqu%3E25098610%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-7255cf4e7ffe471f0ca871b420baa15719676e8b5b78c3987f6b5c3c75a55eec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=236618255&rft_id=info:pmid/&rft_jstor_id=25098610&rfr_iscdi=true |