Loading…
A novel PEDOT:PSS/SWCNH bilayer thin film counter electrode for efficient dye-sensitized solar cells
Thin platinum deposited over fluorine-doped tin oxide glass substrate is a well-known and widely used counter electrode for efficient dye-sensitized solar cells. In this paper, we investigated a potential and Pt-free bilayer thin film counter electrode based on single wall carbon nanohorn over PEDOT...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2020-03, Vol.31 (6), p.4752-4760 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thin platinum deposited over fluorine-doped tin oxide glass substrate is a well-known and widely used counter electrode for efficient dye-sensitized solar cells. In this paper, we investigated a potential and Pt-free bilayer thin film counter electrode based on single wall carbon nanohorn over PEDOT:PSS film. The bilayer thin film counter electrode was developed using a simple spin coat process. The results of atomic force microscope and scanning electron microscope unveil the uniform distribution of single wall carbon nanohorns over PEDOT:PSS with average size of 76 nm. The extensive electrochemical analysis demonstrated superior electrocatalytic behavior for bilayer counter electrode with lower peak-to-peak separation potential of 0.6 V, lower
R
s and
R
CT
values of 25.9 Ω and 399 Ω, and higher
J
o
value of 2.4 mA cm
−2
. The fabricated DSSC using bilayer counter electrode witnessed higher power conversion efficiency of 5.1%, compared to PEDOT:PSS (3.87%) and SWCNH (1.88%), and is almost equivalent to the platinum-based counter electrode (5.53%). The present study of bilayer counter electrode has great potential in terms of low-cost and non-platinum counter electrode for dye-sensitized solar cell applications. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-020-03032-3 |