Loading…

Green function solution of generalised boundary value problems

We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differentia...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-02
Main Authors: Mkrtchian, Vanik E, Henkel, Carsten
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mkrtchian, Vanik E
Henkel, Carsten
description We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.
doi_str_mv 10.48550/arxiv.2002.12129
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2367449655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2367449655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMgWGp_gLeA563Jm2STXAQpWoWCl95LPt7IljXRTVP037uopxmYYR6GkBvO1tIoxe7c9DWc18AYrDlwsBdkAULwzkiAK7Kq9cjmrNeglFiQ--2EmGlqOZyGkmktY_s1JdE3zDi5cagYqS8tRzd907MbG9KPqfgR3-s1uUxurLj61yXZPz3uN8_d7nX7snnYdU6B6gTznPMUg_AgOKgorbfKRKdtDBiSn0vJMOFsbxwEFClobaJyGKTV0Isluf2bnbmfDevpcCxtyjPxAKLXUtp-fvMDLb1K7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367449655</pqid></control><display><type>article</type><title>Green function solution of generalised boundary value problems</title><source>Publicly Available Content Database</source><creator>Mkrtchian, Vanik E ; Henkel, Carsten</creator><creatorcontrib>Mkrtchian, Vanik E ; Henkel, Carsten</creatorcontrib><description>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2002.12129</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Green's functions ; Operators (mathematics) ; Partial differential equations</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2367449655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mkrtchian, Vanik E</creatorcontrib><creatorcontrib>Henkel, Carsten</creatorcontrib><title>Green function solution of generalised boundary value problems</title><title>arXiv.org</title><description>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Green's functions</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEYhIMgWGp_gLeA563Jm2STXAQpWoWCl95LPt7IljXRTVP037uopxmYYR6GkBvO1tIoxe7c9DWc18AYrDlwsBdkAULwzkiAK7Kq9cjmrNeglFiQ--2EmGlqOZyGkmktY_s1JdE3zDi5cagYqS8tRzd907MbG9KPqfgR3-s1uUxurLj61yXZPz3uN8_d7nX7snnYdU6B6gTznPMUg_AgOKgorbfKRKdtDBiSn0vJMOFsbxwEFClobaJyGKTV0Isluf2bnbmfDevpcCxtyjPxAKLXUtp-fvMDLb1K7Q</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Mkrtchian, Vanik E</creator><creator>Henkel, Carsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200225</creationdate><title>Green function solution of generalised boundary value problems</title><author>Mkrtchian, Vanik E ; Henkel, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Green's functions</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Mkrtchian, Vanik E</creatorcontrib><creatorcontrib>Henkel, Carsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mkrtchian, Vanik E</au><au>Henkel, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green function solution of generalised boundary value problems</atitle><jtitle>arXiv.org</jtitle><date>2020-02-25</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2002.12129</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2367449655
source Publicly Available Content Database
subjects Boundary conditions
Boundary value problems
Green's functions
Operators (mathematics)
Partial differential equations
title Green function solution of generalised boundary value problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20function%20solution%20of%20generalised%20boundary%20value%20problems&rft.jtitle=arXiv.org&rft.au=Mkrtchian,%20Vanik%20E&rft.date=2020-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2002.12129&rft_dat=%3Cproquest%3E2367449655%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2367449655&rft_id=info:pmid/&rfr_iscdi=true