Loading…
Green function solution of generalised boundary value problems
We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differentia...
Saved in:
Published in: | arXiv.org 2020-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mkrtchian, Vanik E Henkel, Carsten |
description | We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions. |
doi_str_mv | 10.48550/arxiv.2002.12129 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2367449655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2367449655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263</originalsourceid><addsrcrecordid>eNotj01LAzEYhIMgWGp_gLeA563Jm2STXAQpWoWCl95LPt7IljXRTVP037uopxmYYR6GkBvO1tIoxe7c9DWc18AYrDlwsBdkAULwzkiAK7Kq9cjmrNeglFiQ--2EmGlqOZyGkmktY_s1JdE3zDi5cagYqS8tRzd907MbG9KPqfgR3-s1uUxurLj61yXZPz3uN8_d7nX7snnYdU6B6gTznPMUg_AgOKgorbfKRKdtDBiSn0vJMOFsbxwEFClobaJyGKTV0Isluf2bnbmfDevpcCxtyjPxAKLXUtp-fvMDLb1K7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2367449655</pqid></control><display><type>article</type><title>Green function solution of generalised boundary value problems</title><source>Publicly Available Content Database</source><creator>Mkrtchian, Vanik E ; Henkel, Carsten</creator><creatorcontrib>Mkrtchian, Vanik E ; Henkel, Carsten</creatorcontrib><description>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2002.12129</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Boundary value problems ; Green's functions ; Operators (mathematics) ; Partial differential equations</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2367449655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Mkrtchian, Vanik E</creatorcontrib><creatorcontrib>Henkel, Carsten</creatorcontrib><title>Green function solution of generalised boundary value problems</title><title>arXiv.org</title><description>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Green's functions</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEYhIMgWGp_gLeA563Jm2STXAQpWoWCl95LPt7IljXRTVP037uopxmYYR6GkBvO1tIoxe7c9DWc18AYrDlwsBdkAULwzkiAK7Kq9cjmrNeglFiQ--2EmGlqOZyGkmktY_s1JdE3zDi5cagYqS8tRzd907MbG9KPqfgR3-s1uUxurLj61yXZPz3uN8_d7nX7snnYdU6B6gTznPMUg_AgOKgorbfKRKdtDBiSn0vJMOFsbxwEFClobaJyGKTV0Isluf2bnbmfDevpcCxtyjPxAKLXUtp-fvMDLb1K7Q</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Mkrtchian, Vanik E</creator><creator>Henkel, Carsten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200225</creationdate><title>Green function solution of generalised boundary value problems</title><author>Mkrtchian, Vanik E ; Henkel, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Green's functions</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Mkrtchian, Vanik E</creatorcontrib><creatorcontrib>Henkel, Carsten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mkrtchian, Vanik E</au><au>Henkel, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green function solution of generalised boundary value problems</atitle><jtitle>arXiv.org</jtitle><date>2020-02-25</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal, and linear boundary conditions. The construction generally applies for all types of linear partial differential equations and linear boundary conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2002.12129</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2367449655 |
source | Publicly Available Content Database |
subjects | Boundary conditions Boundary value problems Green's functions Operators (mathematics) Partial differential equations |
title | Green function solution of generalised boundary value problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20function%20solution%20of%20generalised%20boundary%20value%20problems&rft.jtitle=arXiv.org&rft.au=Mkrtchian,%20Vanik%20E&rft.date=2020-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2002.12129&rft_dat=%3Cproquest%3E2367449655%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-30b111fdc3b23125d49b958da79dcecfb525f803a968a2ce3fc778d5aec497263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2367449655&rft_id=info:pmid/&rfr_iscdi=true |