Loading…

Anthropogenic and lightning‐started fires are becoming larger and more frequent over a longer season length in the U.S.A

Aim Over the past several decades, wildfires have become larger, more frequent, and/or more severe in many areas. Simultaneously, anthropogenic ignitions are steadily growing. We have little understanding of how increasing anthropogenic ignitions are changing modern fire regimes. Location Contermino...

Full description

Saved in:
Bibliographic Details
Published in:Global ecology and biogeography 2020-04, Vol.29 (4), p.668-681
Main Authors: Cattau, Megan E., Wessman, Carol, Mahood, Adam, Balch, Jennifer K., Poulter, Benjamin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim Over the past several decades, wildfires have become larger, more frequent, and/or more severe in many areas. Simultaneously, anthropogenic ignitions are steadily growing. We have little understanding of how increasing anthropogenic ignitions are changing modern fire regimes. Location Conterminous United States. Time period 1984–2016. Major taxa studied Vegetation. Methods We aggregated fire radiative power (FRP)‐based fire intensity, event size, burned area, frequency, season length, and ignition type data from > 1.8 million government records and remote sensing data at a 50‐km resolution. We evaluated the relationship between fire physical characteristics and ignition type to determine if and how modern U.S.A. fire regimes are changing sensu stricto given increased anthropogenic ignitions, and how those patterns vary over space and time. Results At a national scale, wildfires occur over longer fire seasons (17% increase) and have become larger (78%) and more frequent (12%), but not necessarily more intense. Further, human ignitions have increased 9% proportionally. The proportion of human ignitions has a negative relationship with fire size and FRP and a positive relationship with fire frequency and season length. Areas dominated by lightning ignitions experience fires that are 2.4 times more intense and 9.2 times larger. Areas dominated by human ignitions experience fires that are twice as frequent and have a fire season that is 2.4 times longer. The effect of human ignitions on fire characteristics varies regionally. Ecoregions in the eastern U.S.A. and in some parts of the coastal western U.S.A. have no areas dominated by lightning ignitions. For the remaining ecoregions, more intense and larger fires are associated with lightning ignitions, and longer season lengths are associated with human ignitions. Main conclusions Increasing anthropogenic ignitions – in tandem with climate and land cover change – are contributing to a ‘new normal’ of fire activity across continental scales.
ISSN:1466-822X
1466-8238
DOI:10.1111/geb.13058