Loading…

Hesitant Fuzzy Linguistic Hamy Mean Aggregation Operators and Their Application to Linguistic Multiple Attribute Decision-Making

Linguistic aggregation operator is a paramount appliance to fix linguistic multiple attribute decision-making (MADM) issues. In the article, the Hamy mean (HM) operator is utilized to fuse hesitant fuzzy linguistic (HFL) information and several novel HFL aggregation operators including the hesitant...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-22
Main Authors: Rong, Yuan, Liu, Yi, Pei, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linguistic aggregation operator is a paramount appliance to fix linguistic multiple attribute decision-making (MADM) issues. In the article, the Hamy mean (HM) operator is utilized to fuse hesitant fuzzy linguistic (HFL) information and several novel HFL aggregation operators including the hesitant fuzzy linguistic Hamy mean (HFLHM) operator, weighted hesitant fuzzy linguistic Hamy mean (WHFLHM) operator, hesitant fuzzy linguistic dual Hamy mean (HFLDHM) operator, and weighted hesitant fuzzy linguistic dual Hamy mean (WHFLDHM) operator are proposed. Besides, several paramount theorems and particular cases of these aggregation operators are investigated in detail, and then a novel MADM approach is presented by using the proposed aggregation operators. Ultimately, a practical example is utilized to manifest the effectiveness and practicability of the propounded method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/3262618