Loading…
Analytical formulation to estimate the dynamic energy loss in electrical steels: Effectiveness and limitations
This article aims to investigate the accuracy in modeling and characterization of the dynamic energy loss of modern laminated electrical steels in use for power electronics applications. Measurements by an Epstein Frame are performed in case of sinusoidal and non-sinusoidal waveform of the magnetic...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2020-02, Vol.579, p.411899, Article 411899 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article aims to investigate the accuracy in modeling and characterization of the dynamic energy loss of modern laminated electrical steels in use for power electronics applications. Measurements by an Epstein Frame are performed in case of sinusoidal and non-sinusoidal waveform of the magnetic induction, at different frequencies and peak values. The Steinmetz and the time domain statistical loss theory, either in frequency domain are used, and the related parameters are fitted experimentally. The dynamic energy loss is also modeled and estimated by means of a finite element method (FEM) formulation in time domain, coupled with a vector Preisach model to represent the constitutive law of the magnetic material. The series of the results reported indicates effectiveness and limitations of the modeling approaches considered. Some considerations about the excess loss are also given. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2019.411899 |