Loading…
Probably Approximately Correct Vision-Based Planning using Motion Primitives
This paper presents an approach for learning vision-based planners that provably generalize to novel environments (i.e., environments unseen during training). We leverage the Probably Approximately Correct (PAC)-Bayes framework to obtain an upper bound on the expected cost of policies across all env...
Saved in:
Published in: | arXiv.org 2020-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an approach for learning vision-based planners that provably generalize to novel environments (i.e., environments unseen during training). We leverage the Probably Approximately Correct (PAC)-Bayes framework to obtain an upper bound on the expected cost of policies across all environments. Minimizing the PAC-Bayes upper bound thus trains policies that are accompanied by a certificate of performance on novel environments. The training pipeline we propose provides strong generalization guarantees for deep neural network policies by (a) obtaining a good prior distribution on the space of policies using Evolutionary Strategies (ES) followed by (b) formulating the PAC-Bayes optimization as an efficiently-solvable parametric convex optimization problem. We demonstrate the efficacy of our approach for producing strong generalization guarantees for learned vision-based motion planners through two simulated examples: (1) an Unmanned Aerial Vehicle (UAV) navigating obstacle fields with an onboard vision sensor, and (2) a dynamic quadrupedal robot traversing rough terrains with proprioceptive and exteroceptive sensors. |
---|---|
ISSN: | 2331-8422 |