Loading…
Versatile magnetic microdiscs for the radio enhancement and mechanical disruption of glioblastoma cancer cells
This study describes the use of highly versatile, lithographically defined magnetic microdiscs. Gold covered magnetic microdiscs are used in both radiosensitizing cancer cells, acting as intracellular emitters of secondary electrons during radiotherapy, and as well as inducing mechanical damage by e...
Saved in:
Published in: | RSC advances 2020-02, Vol.1 (14), p.8161-8171 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study describes the use of highly versatile, lithographically defined magnetic microdiscs. Gold covered magnetic microdiscs are used in both radiosensitizing cancer cells, acting as intracellular emitters of secondary electrons during radiotherapy, and as well as inducing mechanical damage by exerting a mechanical torque when exposed to a rotating magnetic field. This study reveals that lithographically defined microdiscs with a uniform size of 2 microns in diameter highly increase the DNA damage and reduce the glioblastoma colony formation potential compared to conventional radiation therapy. Furthermore, the addition of mechanical disruption mediated by the magnetic component of the discs increased the efficiency of brain cancer cell killing.
First study demonstrating the use of physically engineered magnetic particles that display two functionalities for cancer treatment. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d0ra00164c |