Loading…
Multi-modes for Detecting Experimental Measurement Error
Experiments should be designed to facilitate the detection of experimental measurement error. To this end, we advocate the implementation of identical experimental protocols employing diverse experimental modes. We suggest iterative nonparametric estimation techniques for assessing the magnitude of...
Saved in:
Published in: | Political analysis 2020-04, Vol.28 (2), p.263-283 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43 |
container_end_page | 283 |
container_issue | 2 |
container_start_page | 263 |
container_title | Political analysis |
container_volume | 28 |
creator | Duch, Raymond Laroze, Denise Robinson, Thomas Beramendi, Pablo |
description | Experiments should be designed to facilitate the detection of experimental measurement error. To this end, we advocate the implementation of identical experimental protocols employing diverse experimental modes. We suggest iterative nonparametric estimation techniques for assessing the magnitude of heterogeneous treatment effects across these modes. And we propose two diagnostic strategies—measurement metrics embedded in experiments, and measurement experiments—that help assess whether any observed heterogeneity reflects experimental measurement error. To illustrate our argument, first we conduct and analyze results from four identical interactive experiments: in the lab; online with subjects from the CESS lab subject pool; online with an online subject pool; and online with MTurk workers. Second, we implement a measurement experiment in India with CESS Online subjects and MTurk workers. |
doi_str_mv | 10.1017/pan.2019.34 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369744085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_pan_2019_34</cupid><sourcerecordid>2369744085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK6e_AMFj5KarzbJUdb1A3bxoueQpJOlS7etSQv6723ZBS-e5h14eGd4ELqlJKeEyofetjkjVOdcnKEFFbLEQit9PmUiJKZayUt0ldKeTLTUeoHUdmyGGh-6ClIWupg9wQB-qNtdtv7uIdYHaAfbZFuwaYwwb9k6xi5eo4tgmwQ3p7lEn8_rj9Ur3ry_vK0eN9gzrQcsSpCFYt5JcERJV4TCQyjB8cpTcEzQUABXPngnSAikJCRw5isqbGCqEnyJ7o69fey-RkiD2XdjbKeThvFSSyGIKibq_kj52KUUIZh-et3GH0OJmdWYSY2Z1Rg-d-ITbQ8u1tUO_kr_438BbEhmOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369744085</pqid></control><display><type>article</type><title>Multi-modes for Detecting Experimental Measurement Error</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Social Science Premium Collection</source><source>Politics Collection</source><source>Worldwide Political Science Abstracts</source><source>Cambridge University Press</source><creator>Duch, Raymond ; Laroze, Denise ; Robinson, Thomas ; Beramendi, Pablo</creator><creatorcontrib>Duch, Raymond ; Laroze, Denise ; Robinson, Thomas ; Beramendi, Pablo</creatorcontrib><description>Experiments should be designed to facilitate the detection of experimental measurement error. To this end, we advocate the implementation of identical experimental protocols employing diverse experimental modes. We suggest iterative nonparametric estimation techniques for assessing the magnitude of heterogeneous treatment effects across these modes. And we propose two diagnostic strategies—measurement metrics embedded in experiments, and measurement experiments—that help assess whether any observed heterogeneity reflects experimental measurement error. To illustrate our argument, first we conduct and analyze results from four identical interactive experiments: in the lab; online with subjects from the CESS lab subject pool; online with an online subject pool; and online with MTurk workers. Second, we implement a measurement experiment in India with CESS Online subjects and MTurk workers.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1017/pan.2019.34</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Earnings ; Estimation ; Experiments ; Heterogeneity ; Internet ; Measurement errors ; Researchers ; Social networks ; Social sciences ; Statistical analysis ; Workers</subject><ispartof>Political analysis, 2020-04, Vol.28 (2), p.263-283</ispartof><rights>Copyright © The Author(s) 2019. Published by Cambridge University Press on behalf of the Society for Political Methodology.</rights><rights>Copyright Cambridge University Press Apr 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43</citedby><cites>FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43</cites><orcidid>0000-0002-6138-2570 ; 0000-0001-7097-1599 ; 0000-0002-1166-7674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2369744085/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2369744085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,12845,21387,21394,27924,27925,33611,33985,43733,43948,72960,74221,74468</link.rule.ids></links><search><creatorcontrib>Duch, Raymond</creatorcontrib><creatorcontrib>Laroze, Denise</creatorcontrib><creatorcontrib>Robinson, Thomas</creatorcontrib><creatorcontrib>Beramendi, Pablo</creatorcontrib><title>Multi-modes for Detecting Experimental Measurement Error</title><title>Political analysis</title><addtitle>Polit. Anal</addtitle><description>Experiments should be designed to facilitate the detection of experimental measurement error. To this end, we advocate the implementation of identical experimental protocols employing diverse experimental modes. We suggest iterative nonparametric estimation techniques for assessing the magnitude of heterogeneous treatment effects across these modes. And we propose two diagnostic strategies—measurement metrics embedded in experiments, and measurement experiments—that help assess whether any observed heterogeneity reflects experimental measurement error. To illustrate our argument, first we conduct and analyze results from four identical interactive experiments: in the lab; online with subjects from the CESS lab subject pool; online with an online subject pool; and online with MTurk workers. Second, we implement a measurement experiment in India with CESS Online subjects and MTurk workers.</description><subject>Earnings</subject><subject>Estimation</subject><subject>Experiments</subject><subject>Heterogeneity</subject><subject>Internet</subject><subject>Measurement errors</subject><subject>Researchers</subject><subject>Social networks</subject><subject>Social sciences</subject><subject>Statistical analysis</subject><subject>Workers</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>ALSLI</sourceid><sourceid>DPSOV</sourceid><sourceid>M2L</sourceid><sourceid>M2R</sourceid><recordid>eNptkE1LxDAQhoMouK6e_AMFj5KarzbJUdb1A3bxoueQpJOlS7etSQv6723ZBS-e5h14eGd4ELqlJKeEyofetjkjVOdcnKEFFbLEQit9PmUiJKZayUt0ldKeTLTUeoHUdmyGGh-6ClIWupg9wQB-qNtdtv7uIdYHaAfbZFuwaYwwb9k6xi5eo4tgmwQ3p7lEn8_rj9Ur3ry_vK0eN9gzrQcsSpCFYt5JcERJV4TCQyjB8cpTcEzQUABXPngnSAikJCRw5isqbGCqEnyJ7o69fey-RkiD2XdjbKeThvFSSyGIKibq_kj52KUUIZh-et3GH0OJmdWYSY2Z1Rg-d-ITbQ8u1tUO_kr_438BbEhmOw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Duch, Raymond</creator><creator>Laroze, Denise</creator><creator>Robinson, Thomas</creator><creator>Beramendi, Pablo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7UB</scope><scope>7XB</scope><scope>88F</scope><scope>88J</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KC-</scope><scope>M1Q</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6138-2570</orcidid><orcidid>https://orcid.org/0000-0001-7097-1599</orcidid><orcidid>https://orcid.org/0000-0002-1166-7674</orcidid></search><sort><creationdate>202004</creationdate><title>Multi-modes for Detecting Experimental Measurement Error</title><author>Duch, Raymond ; Laroze, Denise ; Robinson, Thomas ; Beramendi, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Earnings</topic><topic>Estimation</topic><topic>Experiments</topic><topic>Heterogeneity</topic><topic>Internet</topic><topic>Measurement errors</topic><topic>Researchers</topic><topic>Social networks</topic><topic>Social sciences</topic><topic>Statistical analysis</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duch, Raymond</creatorcontrib><creatorcontrib>Laroze, Denise</creatorcontrib><creatorcontrib>Robinson, Thomas</creatorcontrib><creatorcontrib>Beramendi, Pablo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Worldwide Political Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Politics Collection</collection><collection>ProQuest Military Database</collection><collection>Political Science Database</collection><collection>ProQuest_Research Library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duch, Raymond</au><au>Laroze, Denise</au><au>Robinson, Thomas</au><au>Beramendi, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modes for Detecting Experimental Measurement Error</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. Anal</addtitle><date>2020-04</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>263</spage><epage>283</epage><pages>263-283</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Experiments should be designed to facilitate the detection of experimental measurement error. To this end, we advocate the implementation of identical experimental protocols employing diverse experimental modes. We suggest iterative nonparametric estimation techniques for assessing the magnitude of heterogeneous treatment effects across these modes. And we propose two diagnostic strategies—measurement metrics embedded in experiments, and measurement experiments—that help assess whether any observed heterogeneity reflects experimental measurement error. To illustrate our argument, first we conduct and analyze results from four identical interactive experiments: in the lab; online with subjects from the CESS lab subject pool; online with an online subject pool; and online with MTurk workers. Second, we implement a measurement experiment in India with CESS Online subjects and MTurk workers.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/pan.2019.34</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6138-2570</orcidid><orcidid>https://orcid.org/0000-0001-7097-1599</orcidid><orcidid>https://orcid.org/0000-0002-1166-7674</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2020-04, Vol.28 (2), p.263-283 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_journals_2369744085 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Social Science Premium Collection; Politics Collection; Worldwide Political Science Abstracts; Cambridge University Press |
subjects | Earnings Estimation Experiments Heterogeneity Internet Measurement errors Researchers Social networks Social sciences Statistical analysis Workers |
title | Multi-modes for Detecting Experimental Measurement Error |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modes%20for%20Detecting%20Experimental%20Measurement%20Error&rft.jtitle=Political%20analysis&rft.au=Duch,%20Raymond&rft.date=2020-04&rft.volume=28&rft.issue=2&rft.spage=263&rft.epage=283&rft.pages=263-283&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1017/pan.2019.34&rft_dat=%3Cproquest_cross%3E2369744085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-46e7582cb7eb087b5f5cef6eb3dc1eb241f5e38cfcb40ff0600f32cd14af28d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369744085&rft_id=info:pmid/&rft_cupid=10_1017_pan_2019_34&rfr_iscdi=true |