Loading…

Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices

Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence tec...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2020-03, Vol.10 (9), p.n/a
Main Authors: Knight, Alexander J., Patel, Jay B., Snaith, Henry J., Johnston, Michael B., Herz, Laura M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253
cites cdi_FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced energy materials
container_volume 10
creator Knight, Alexander J.
Patel, Jay B.
Snaith, Henry J.
Johnston, Michael B.
Herz, Laura M.
description Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed‐halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge‐carriers in the perovskite, a charge‐neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge‐carriers can be extracted from the iodide‐rich low‐bandgap regions of the phase‐segregated perovskite formed under illumination, suggesting the existence of charge‐carrier percolation pathways through grain boundaries where phase‐segregation may occur. Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells. Through photoluminescence measurements and electric field application, three distinct defect species are found responsible for charge‐carrier trapping, halide segregation, and electric field screening, respectively, within MAPb(Br0.5I0.5)3 materials. External quantum efficiency measurements highlight that charge‐carriers can be extracted from the low‐bandgap regions of the phase‐segregated perovskite formed under illumination.
doi_str_mv 10.1002/aenm.201903488
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369746156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369746156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxhujiQS5em7i1cV2_5TdI0EQE1AS8NwM21koLrvYFpSbj-Az-iSWYPDoXGYy-X4z-T5Crjlrc8bCO8Bq3Q4Zz1gUp-kZaXDB40CkMTs_zVF4SVrWrpivOOMsihoEZwY2dOrAob2l_RJzZ3ROBxpL5RdQKTpZgkU6xYXBBThdV1RXdKw_UH1_fg2h1ArpBE29s6_a-XFZu3pXlw78nXvc6RztFbkooLTY-u1N8jLoz3rDYPT88NjrjoI84p00ACiESgWoUKWdeRhyyHjOvSdVQB7zBJOOmIs0QVGILAfuoXnq7cYCwENJ1CQ3x7sbU79t0Tq5qrem8i9lGImsEwueCK9qH1W5qa01WMiN0Wswe8mZPKQpD2nKU5oeyI7Auy5x_49advtP4z_2Bw4QecA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369746156</pqid></control><display><type>article</type><title>Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Knight, Alexander J. ; Patel, Jay B. ; Snaith, Henry J. ; Johnston, Michael B. ; Herz, Laura M.</creator><creatorcontrib>Knight, Alexander J. ; Patel, Jay B. ; Snaith, Henry J. ; Johnston, Michael B. ; Herz, Laura M.</creatorcontrib><description>Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed‐halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge‐carriers in the perovskite, a charge‐neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge‐carriers can be extracted from the iodide‐rich low‐bandgap regions of the phase‐segregated perovskite formed under illumination, suggesting the existence of charge‐carrier percolation pathways through grain boundaries where phase‐segregation may occur. Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells. Through photoluminescence measurements and electric field application, three distinct defect species are found responsible for charge‐carrier trapping, halide segregation, and electric field screening, respectively, within MAPb(Br0.5I0.5)3 materials. External quantum efficiency measurements highlight that charge‐carriers can be extracted from the low‐bandgap regions of the phase‐segregated perovskite formed under illumination.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903488</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charging ; Crystal defects ; Current carriers ; Defects ; Electric fields ; Energy gap ; Grain boundaries ; halide segregation ; Interstitials ; Lattice vacancies ; Percolation ; Perovskites ; Photoluminescence ; Photovoltaic cells ; photovoltaic devices ; Quantum efficiency ; Solar cells ; trap states</subject><ispartof>Advanced energy materials, 2020-03, Vol.10 (9), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253</citedby><cites>FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253</cites><orcidid>0000-0001-9621-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Knight, Alexander J.</creatorcontrib><creatorcontrib>Patel, Jay B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><title>Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices</title><title>Advanced energy materials</title><description>Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed‐halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge‐carriers in the perovskite, a charge‐neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge‐carriers can be extracted from the iodide‐rich low‐bandgap regions of the phase‐segregated perovskite formed under illumination, suggesting the existence of charge‐carrier percolation pathways through grain boundaries where phase‐segregation may occur. Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells. Through photoluminescence measurements and electric field application, three distinct defect species are found responsible for charge‐carrier trapping, halide segregation, and electric field screening, respectively, within MAPb(Br0.5I0.5)3 materials. External quantum efficiency measurements highlight that charge‐carriers can be extracted from the low‐bandgap regions of the phase‐segregated perovskite formed under illumination.</description><subject>Charging</subject><subject>Crystal defects</subject><subject>Current carriers</subject><subject>Defects</subject><subject>Electric fields</subject><subject>Energy gap</subject><subject>Grain boundaries</subject><subject>halide segregation</subject><subject>Interstitials</subject><subject>Lattice vacancies</subject><subject>Percolation</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>photovoltaic devices</subject><subject>Quantum efficiency</subject><subject>Solar cells</subject><subject>trap states</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQxhujiQS5em7i1cV2_5TdI0EQE1AS8NwM21koLrvYFpSbj-Az-iSWYPDoXGYy-X4z-T5Crjlrc8bCO8Bq3Q4Zz1gUp-kZaXDB40CkMTs_zVF4SVrWrpivOOMsihoEZwY2dOrAob2l_RJzZ3ROBxpL5RdQKTpZgkU6xYXBBThdV1RXdKw_UH1_fg2h1ArpBE29s6_a-XFZu3pXlw78nXvc6RztFbkooLTY-u1N8jLoz3rDYPT88NjrjoI84p00ACiESgWoUKWdeRhyyHjOvSdVQB7zBJOOmIs0QVGILAfuoXnq7cYCwENJ1CQ3x7sbU79t0Tq5qrem8i9lGImsEwueCK9qH1W5qa01WMiN0Wswe8mZPKQpD2nKU5oeyI7Auy5x_49advtP4z_2Bw4QecA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Knight, Alexander J.</creator><creator>Patel, Jay B.</creator><creator>Snaith, Henry J.</creator><creator>Johnston, Michael B.</creator><creator>Herz, Laura M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid></search><sort><creationdate>20200301</creationdate><title>Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices</title><author>Knight, Alexander J. ; Patel, Jay B. ; Snaith, Henry J. ; Johnston, Michael B. ; Herz, Laura M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charging</topic><topic>Crystal defects</topic><topic>Current carriers</topic><topic>Defects</topic><topic>Electric fields</topic><topic>Energy gap</topic><topic>Grain boundaries</topic><topic>halide segregation</topic><topic>Interstitials</topic><topic>Lattice vacancies</topic><topic>Percolation</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>photovoltaic devices</topic><topic>Quantum efficiency</topic><topic>Solar cells</topic><topic>trap states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, Alexander J.</creatorcontrib><creatorcontrib>Patel, Jay B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, Alexander J.</au><au>Patel, Jay B.</au><au>Snaith, Henry J.</au><au>Johnston, Michael B.</au><au>Herz, Laura M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices</atitle><jtitle>Advanced energy materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells due to their tunable bandgap. However, trap states and halide segregation currently present the two main challenges for efficient mixed‐halide perovskite technologies. Here photoluminescence techniques are used to study trap states and halide segregation in full mixed‐halide perovskite photovoltaic devices. This work identifies three distinct defect species in the perovskite material: a charged, mobile defect that traps charge‐carriers in the perovskite, a charge‐neutral defect that induces halide segregation, and a charged, mobile defect that screens the perovskite from external electric fields. These three defects are proposed to be MA+ interstitials, crystal distortions, and halide vacancies and/or interstitials, respectively. Finally, external quantum efficiency measurements show that photoexcited charge‐carriers can be extracted from the iodide‐rich low‐bandgap regions of the phase‐segregated perovskite formed under illumination, suggesting the existence of charge‐carrier percolation pathways through grain boundaries where phase‐segregation may occur. Mixed‐halide perovskites are essential for use in all‐perovskite or perovskite–silicon tandem solar cells. Through photoluminescence measurements and electric field application, three distinct defect species are found responsible for charge‐carrier trapping, halide segregation, and electric field screening, respectively, within MAPb(Br0.5I0.5)3 materials. External quantum efficiency measurements highlight that charge‐carriers can be extracted from the low‐bandgap regions of the phase‐segregated perovskite formed under illumination.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903488</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-03, Vol.10 (9), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2369746156
source Wiley-Blackwell Read & Publish Collection
subjects Charging
Crystal defects
Current carriers
Defects
Electric fields
Energy gap
Grain boundaries
halide segregation
Interstitials
Lattice vacancies
Percolation
Perovskites
Photoluminescence
Photovoltaic cells
photovoltaic devices
Quantum efficiency
Solar cells
trap states
title Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trap%20States,%20Electric%20Fields,%20and%20Phase%20Segregation%20in%20Mixed%E2%80%90Halide%20Perovskite%20Photovoltaic%20Devices&rft.jtitle=Advanced%20energy%20materials&rft.au=Knight,%20Alexander%20J.&rft.date=2020-03-01&rft.volume=10&rft.issue=9&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903488&rft_dat=%3Cproquest_cross%3E2369746156%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-aaf6d86ad2d87b221a91c1190dfac415e576b685e6f69ca1317b848846aaad253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369746156&rft_id=info:pmid/&rfr_iscdi=true