Loading…

Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD

The effect of DC negative bias (−  V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2020-04, Vol.126 (4), Article 247
Main Authors: Ji, Peiyu, Chen, Jiali, Huang, Tianyuan, Jin, Chenggang, Zhuge, Lanjian, Wu, Xuemei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103
cites cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103
container_end_page
container_issue 4
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 126
creator Ji, Peiyu
Chen, Jiali
Huang, Tianyuan
Jin, Chenggang
Zhuge, Lanjian
Wu, Xuemei
description The effect of DC negative bias (−  V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −  V s on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH x bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −  V s . The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −  V s and the maximum mechanical hardness can reach 18.5 GPa at −  V s  = − 60 V.
doi_str_mv 10.1007/s00339-020-3349-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369918684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369918684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</originalsourceid><addsrcrecordid>eNp1kElLxEAQhRtRcBz9Ad4aPLdWL3TSR8mMjiDoweUYeh0zZLM7EcZfb4YInqxDFQXve0U9hC4pXFOA7CYBcK4IMCCcC0X4EVpQwRkByeEYLUCJjORcyVN0ltIOphKMLdD3OgRvB9wFvCpw67d6qL48NpVOuGtxU9nYpSGOdhijx7p1OI0xaOtx08X-o6u77f4A63kdE05VXdkJtTqaynkcqrpJuI--19E7bPZ48_5MirfVOToJuk7-4ncu0evd-qXYkMen-4fi9pFYTuVApDA2YwrAmeAUYxl4KmkeTKYtOMpsppyHDJQzuTbUOaaMo1QIq2SWU-BLdDX79rH7HH0ayl03xnY6WTIulaK5zMWkorPq8HCKPpR9rBod9yWF8hBxOUdcThGXh4intkRsZtKkbbc-_jn_D_0AVZR_Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369918684</pqid></control><display><type>article</type><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><source>Springer Nature</source><creator>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</creator><creatorcontrib>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</creatorcontrib><description>The effect of DC negative bias (−  V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −  V s on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH x bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −  V s . The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −  V s and the maximum mechanical hardness can reach 18.5 GPa at −  V s  = − 60 V.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-3349-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amorphous materials ; Amorphous silicon ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Bias ; Carbon ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Condensed Matter Physics ; Fourier transforms ; Machines ; Manufacturing ; Materials science ; Microhardness ; Microstructure ; Morphology ; Nanotechnology ; Optical and Electronic Materials ; Organic chemistry ; Physics ; Physics and Astronomy ; Processes ; Raman spectra ; Raman spectroscopy ; Silicon carbide ; Spectrum analysis ; Substrates ; Surface roughness ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2020-04, Vol.126 (4), Article 247</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</citedby><cites>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ji, Peiyu</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Huang, Tianyuan</creatorcontrib><creatorcontrib>Jin, Chenggang</creatorcontrib><creatorcontrib>Zhuge, Lanjian</creatorcontrib><creatorcontrib>Wu, Xuemei</creatorcontrib><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>The effect of DC negative bias (−  V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −  V s on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH x bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −  V s . The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −  V s and the maximum mechanical hardness can reach 18.5 GPa at −  V s  = − 60 V.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Bias</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Condensed Matter Physics</subject><subject>Fourier transforms</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Silicon carbide</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kElLxEAQhRtRcBz9Ad4aPLdWL3TSR8mMjiDoweUYeh0zZLM7EcZfb4YInqxDFQXve0U9hC4pXFOA7CYBcK4IMCCcC0X4EVpQwRkByeEYLUCJjORcyVN0ltIOphKMLdD3OgRvB9wFvCpw67d6qL48NpVOuGtxU9nYpSGOdhijx7p1OI0xaOtx08X-o6u77f4A63kdE05VXdkJtTqaynkcqrpJuI--19E7bPZ48_5MirfVOToJuk7-4ncu0evd-qXYkMen-4fi9pFYTuVApDA2YwrAmeAUYxl4KmkeTKYtOMpsppyHDJQzuTbUOaaMo1QIq2SWU-BLdDX79rH7HH0ayl03xnY6WTIulaK5zMWkorPq8HCKPpR9rBod9yWF8hBxOUdcThGXh4intkRsZtKkbbc-_jn_D_0AVZR_Jw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ji, Peiyu</creator><creator>Chen, Jiali</creator><creator>Huang, Tianyuan</creator><creator>Jin, Chenggang</creator><creator>Zhuge, Lanjian</creator><creator>Wu, Xuemei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><author>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Bias</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Condensed Matter Physics</topic><topic>Fourier transforms</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Silicon carbide</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Peiyu</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Huang, Tianyuan</creatorcontrib><creatorcontrib>Jin, Chenggang</creatorcontrib><creatorcontrib>Zhuge, Lanjian</creatorcontrib><creatorcontrib>Wu, Xuemei</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Peiyu</au><au>Chen, Jiali</au><au>Huang, Tianyuan</au><au>Jin, Chenggang</au><au>Zhuge, Lanjian</au><au>Wu, Xuemei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>126</volume><issue>4</issue><artnum>247</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The effect of DC negative bias (−  V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −  V s on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH x bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −  V s . The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −  V s and the maximum mechanical hardness can reach 18.5 GPa at −  V s  = − 60 V.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-3349-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 247
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2369918684
source Springer Nature
subjects Amorphous materials
Amorphous silicon
Applied physics
Atomic force microscopes
Atomic force microscopy
Bias
Carbon
Characterization and Evaluation of Materials
Chemical vapor deposition
Condensed Matter Physics
Fourier transforms
Machines
Manufacturing
Materials science
Microhardness
Microstructure
Morphology
Nanotechnology
Optical and Electronic Materials
Organic chemistry
Physics
Physics and Astronomy
Processes
Raman spectra
Raman spectroscopy
Silicon carbide
Spectrum analysis
Substrates
Surface roughness
Surfaces and Interfaces
Thin Films
title Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20DC%20negative%20bias%20on%20microstructure%20and%20surface%20morphology%20of%20amorphous%20silicon%20carbide%20films%20prepared%20by%20HWP-CVD&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ji,%20Peiyu&rft.date=2020-04-01&rft.volume=126&rft.issue=4&rft.artnum=247&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-3349-3&rft_dat=%3Cproquest_cross%3E2369918684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369918684&rft_id=info:pmid/&rfr_iscdi=true