Loading…
Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD
The effect of DC negative bias (− V s ) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2020-04, Vol.126 (4), Article 247 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 126 |
creator | Ji, Peiyu Chen, Jiali Huang, Tianyuan Jin, Chenggang Zhuge, Lanjian Wu, Xuemei |
description | The effect of DC negative bias (−
V
s
) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −
V
s
on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH
x
bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −
V
s
. The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −
V
s
and the maximum mechanical hardness can reach 18.5 GPa at −
V
s
= − 60 V. |
doi_str_mv | 10.1007/s00339-020-3349-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2369918684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369918684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</originalsourceid><addsrcrecordid>eNp1kElLxEAQhRtRcBz9Ad4aPLdWL3TSR8mMjiDoweUYeh0zZLM7EcZfb4YInqxDFQXve0U9hC4pXFOA7CYBcK4IMCCcC0X4EVpQwRkByeEYLUCJjORcyVN0ltIOphKMLdD3OgRvB9wFvCpw67d6qL48NpVOuGtxU9nYpSGOdhijx7p1OI0xaOtx08X-o6u77f4A63kdE05VXdkJtTqaynkcqrpJuI--19E7bPZ48_5MirfVOToJuk7-4ncu0evd-qXYkMen-4fi9pFYTuVApDA2YwrAmeAUYxl4KmkeTKYtOMpsppyHDJQzuTbUOaaMo1QIq2SWU-BLdDX79rH7HH0ayl03xnY6WTIulaK5zMWkorPq8HCKPpR9rBod9yWF8hBxOUdcThGXh4intkRsZtKkbbc-_jn_D_0AVZR_Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369918684</pqid></control><display><type>article</type><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><source>Springer Nature</source><creator>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</creator><creatorcontrib>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</creatorcontrib><description>The effect of DC negative bias (−
V
s
) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −
V
s
on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH
x
bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −
V
s
. The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −
V
s
and the maximum mechanical hardness can reach 18.5 GPa at −
V
s
= − 60 V.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-3349-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amorphous materials ; Amorphous silicon ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Bias ; Carbon ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Condensed Matter Physics ; Fourier transforms ; Machines ; Manufacturing ; Materials science ; Microhardness ; Microstructure ; Morphology ; Nanotechnology ; Optical and Electronic Materials ; Organic chemistry ; Physics ; Physics and Astronomy ; Processes ; Raman spectra ; Raman spectroscopy ; Silicon carbide ; Spectrum analysis ; Substrates ; Surface roughness ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 247</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</citedby><cites>FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ji, Peiyu</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Huang, Tianyuan</creatorcontrib><creatorcontrib>Jin, Chenggang</creatorcontrib><creatorcontrib>Zhuge, Lanjian</creatorcontrib><creatorcontrib>Wu, Xuemei</creatorcontrib><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>The effect of DC negative bias (−
V
s
) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −
V
s
on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH
x
bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −
V
s
. The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −
V
s
and the maximum mechanical hardness can reach 18.5 GPa at −
V
s
= − 60 V.</description><subject>Amorphous materials</subject><subject>Amorphous silicon</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Bias</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Condensed Matter Physics</subject><subject>Fourier transforms</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Silicon carbide</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kElLxEAQhRtRcBz9Ad4aPLdWL3TSR8mMjiDoweUYeh0zZLM7EcZfb4YInqxDFQXve0U9hC4pXFOA7CYBcK4IMCCcC0X4EVpQwRkByeEYLUCJjORcyVN0ltIOphKMLdD3OgRvB9wFvCpw67d6qL48NpVOuGtxU9nYpSGOdhijx7p1OI0xaOtx08X-o6u77f4A63kdE05VXdkJtTqaynkcqrpJuI--19E7bPZ48_5MirfVOToJuk7-4ncu0evd-qXYkMen-4fi9pFYTuVApDA2YwrAmeAUYxl4KmkeTKYtOMpsppyHDJQzuTbUOaaMo1QIq2SWU-BLdDX79rH7HH0ayl03xnY6WTIulaK5zMWkorPq8HCKPpR9rBod9yWF8hBxOUdcThGXh4intkRsZtKkbbc-_jn_D_0AVZR_Jw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ji, Peiyu</creator><creator>Chen, Jiali</creator><creator>Huang, Tianyuan</creator><creator>Jin, Chenggang</creator><creator>Zhuge, Lanjian</creator><creator>Wu, Xuemei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</title><author>Ji, Peiyu ; Chen, Jiali ; Huang, Tianyuan ; Jin, Chenggang ; Zhuge, Lanjian ; Wu, Xuemei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous materials</topic><topic>Amorphous silicon</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Bias</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Condensed Matter Physics</topic><topic>Fourier transforms</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Silicon carbide</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Peiyu</creatorcontrib><creatorcontrib>Chen, Jiali</creatorcontrib><creatorcontrib>Huang, Tianyuan</creatorcontrib><creatorcontrib>Jin, Chenggang</creatorcontrib><creatorcontrib>Zhuge, Lanjian</creatorcontrib><creatorcontrib>Wu, Xuemei</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Peiyu</au><au>Chen, Jiali</au><au>Huang, Tianyuan</au><au>Jin, Chenggang</au><au>Zhuge, Lanjian</au><au>Wu, Xuemei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>126</volume><issue>4</issue><artnum>247</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The effect of DC negative bias (−
V
s
) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of −
V
s
on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CH
x
bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of −
V
s
. The results of ultra-microhardness tester show that the hardness of the films increases with the increase of −
V
s
and the maximum mechanical hardness can reach 18.5 GPa at −
V
s
= − 60 V.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-3349-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2020-04, Vol.126 (4), Article 247 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2369918684 |
source | Springer Nature |
subjects | Amorphous materials Amorphous silicon Applied physics Atomic force microscopes Atomic force microscopy Bias Carbon Characterization and Evaluation of Materials Chemical vapor deposition Condensed Matter Physics Fourier transforms Machines Manufacturing Materials science Microhardness Microstructure Morphology Nanotechnology Optical and Electronic Materials Organic chemistry Physics Physics and Astronomy Processes Raman spectra Raman spectroscopy Silicon carbide Spectrum analysis Substrates Surface roughness Surfaces and Interfaces Thin Films |
title | Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20DC%20negative%20bias%20on%20microstructure%20and%20surface%20morphology%20of%20amorphous%20silicon%20carbide%20films%20prepared%20by%20HWP-CVD&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ji,%20Peiyu&rft.date=2020-04-01&rft.volume=126&rft.issue=4&rft.artnum=247&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-3349-3&rft_dat=%3Cproquest_cross%3E2369918684%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-64bc72900dbfd92270e1618fb7ac0d12c79de0709db8ab1dd29bd1144c9678103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369918684&rft_id=info:pmid/&rfr_iscdi=true |