Loading…
On robot compliance. A cerebellar control approach
The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Abadia, Ignacio Naveros, Francisco Garrido, Jesus A Ros, Eduardo Luque, Niceto R |
description | The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot's sensorial signals, the robot's goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot's actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements. |
doi_str_mv | 10.48550/arxiv.2003.01033 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2370239587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2370239587</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-5476402de4a694127e6ae60fd0b69739ce437b8a20e7c0968236648aff5c9a2f3</originalsourceid><addsrcrecordid>eNotjbtqw0AQAI9AIMbxB6QTpJay2r1naUxeYHDj3qzOK2wj65STHPL5ESTVFAMzSj3VUGlvDLxw_jl_VwhAFdRAdKcWSFSXXiM-qNU4XgAArUNjaKFw1xc5NWkqYroO3Zn7KFWxLqJkaaTrOM-in3LqCh6GnDieHtV9y90oq38u1f7tdb_5KLe798_NeluyQVca7awGPIpmG3SNTiyLhfYIjQ2OQhRNrvGMIC5CsB7JWu25bU0MjC0t1fNfdr5-3WScDpd0y_18PCA5QArGO_oFNh9EkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370239587</pqid></control><display><type>article</type><title>On robot compliance. A cerebellar control approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Abadia, Ignacio ; Naveros, Francisco ; Garrido, Jesus A ; Ros, Eduardo ; Luque, Niceto R</creator><creatorcontrib>Abadia, Ignacio ; Naveros, Francisco ; Garrido, Jesus A ; Ros, Eduardo ; Luque, Niceto R</creatorcontrib><description>The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot's sensorial signals, the robot's goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot's actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2003.01033</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Adaptive control ; Cerebellum ; Commands ; Controllers ; Degrees of freedom ; Feedback control ; Modulus of elasticity ; Muscles ; Robot arms ; Robot control ; Robots ; Spiking ; Time dependence ; Torque</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2370239587?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Abadia, Ignacio</creatorcontrib><creatorcontrib>Naveros, Francisco</creatorcontrib><creatorcontrib>Garrido, Jesus A</creatorcontrib><creatorcontrib>Ros, Eduardo</creatorcontrib><creatorcontrib>Luque, Niceto R</creatorcontrib><title>On robot compliance. A cerebellar control approach</title><title>arXiv.org</title><description>The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot's sensorial signals, the robot's goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot's actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Cerebellum</subject><subject>Commands</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Feedback control</subject><subject>Modulus of elasticity</subject><subject>Muscles</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robots</subject><subject>Spiking</subject><subject>Time dependence</subject><subject>Torque</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjbtqw0AQAI9AIMbxB6QTpJay2r1naUxeYHDj3qzOK2wj65STHPL5ESTVFAMzSj3VUGlvDLxw_jl_VwhAFdRAdKcWSFSXXiM-qNU4XgAArUNjaKFw1xc5NWkqYroO3Zn7KFWxLqJkaaTrOM-in3LqCh6GnDieHtV9y90oq38u1f7tdb_5KLe798_NeluyQVca7awGPIpmG3SNTiyLhfYIjQ2OQhRNrvGMIC5CsB7JWu25bU0MjC0t1fNfdr5-3WScDpd0y_18PCA5QArGO_oFNh9EkA</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Abadia, Ignacio</creator><creator>Naveros, Francisco</creator><creator>Garrido, Jesus A</creator><creator>Ros, Eduardo</creator><creator>Luque, Niceto R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200331</creationdate><title>On robot compliance. A cerebellar control approach</title><author>Abadia, Ignacio ; Naveros, Francisco ; Garrido, Jesus A ; Ros, Eduardo ; Luque, Niceto R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-5476402de4a694127e6ae60fd0b69739ce437b8a20e7c0968236648aff5c9a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Cerebellum</topic><topic>Commands</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Feedback control</topic><topic>Modulus of elasticity</topic><topic>Muscles</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robots</topic><topic>Spiking</topic><topic>Time dependence</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Abadia, Ignacio</creatorcontrib><creatorcontrib>Naveros, Francisco</creatorcontrib><creatorcontrib>Garrido, Jesus A</creatorcontrib><creatorcontrib>Ros, Eduardo</creatorcontrib><creatorcontrib>Luque, Niceto R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abadia, Ignacio</au><au>Naveros, Francisco</au><au>Garrido, Jesus A</au><au>Ros, Eduardo</au><au>Luque, Niceto R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On robot compliance. A cerebellar control approach</atitle><jtitle>arXiv.org</jtitle><date>2020-03-31</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The work presented here is a novel biological approach for the compliant control of a robotic arm in real time (RT). We integrate a spiking cerebellar network at the core of a feedback control loop performing torque-driven control. The spiking cerebellar controller provides torque commands allowing for accurate and coordinated arm movements. To compute these output motor commands, the spiking cerebellar controller receives the robot's sensorial signals, the robot's goal behavior, and an instructive signal. These input signals are translated into a set of evolving spiking patterns representing univocally a specific system state at every point of time. Spike-timing-dependent plasticity (STDP) is then supported, allowing for building adaptive control. The spiking cerebellar controller continuously adapts the torque commands provided to the robot from experience as STDP is deployed. Adaptive torque commands, in turn, help the spiking cerebellar controller to cope with built-in elastic elements within the robot's actuators mimicking human muscles (inherently elastic). We propose a natural integration of a bio inspired control scheme, based on the cerebellum, with a compliant robot. We prove that our compliant approach outperforms the accuracy of the default factory-installed position control in a set of tasks used for addressing cerebellar motor behavior: controlling six degrees of freedom (DoF) in smooth movements, fast ballistic movements, and unstructured scenario compliant movements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2003.01033</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2370239587 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Actuators Adaptive control Cerebellum Commands Controllers Degrees of freedom Feedback control Modulus of elasticity Muscles Robot arms Robot control Robots Spiking Time dependence Torque |
title | On robot compliance. A cerebellar control approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20robot%20compliance.%20A%20cerebellar%20control%20approach&rft.jtitle=arXiv.org&rft.au=Abadia,%20Ignacio&rft.date=2020-03-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2003.01033&rft_dat=%3Cproquest%3E2370239587%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-5476402de4a694127e6ae60fd0b69739ce437b8a20e7c0968236648aff5c9a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2370239587&rft_id=info:pmid/&rfr_iscdi=true |