Loading…
Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements
Improving the lateral resolution is a key focus of the research on optical measuring systems to expand the fields of application for optical metrology. By means of microspheres put on an object in a microscope, and therefore used as a near-field support, it has already been shown that a superresolut...
Saved in:
Published in: | Applied optics (2004) 2020-02, Vol.59 (6), p.1695 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Improving the lateral resolution is a key focus of the research on optical measuring systems to expand the fields of application for optical metrology. By means of microspheres put on an object in a microscope, and therefore used as a near-field support, it has already been shown that a superresolution of structures below Abbe's diffraction limit is possible. The following investigations give more detailed theoretical and experimental insight into the physical mechanisms responsible for the transition of near-field information to the far field. In particular, the effects of microspheres as near-field support on the behavior of phase-evaluating interference microscopes close to the optical resolution limit are studied experimentally as well as with numerical simulations. Special attention is drawn to measured data taken with a Linnik microscope of high numerical aperture. Finally, the measurement results of grating structures with a period below Abbe's diffraction limit are presented. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.379222 |