Loading…
Thiamethoxam removal by Fenton and biological oxidation
BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technol...
Saved in:
Published in: | Journal of chemical technology and biotechnology (1986) 2020-04, Vol.95 (4), p.913-921 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3 |
container_end_page | 921 |
container_issue | 4 |
container_start_page | 913 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 95 |
creator | Gomez‐Herrero, Esther Lebik‐ElHadi, Hafida Ait‐Amar, Hamid Tobajas, Montserrat Rodriguez, Juan J Mohedano, Angel F |
description | BACKGROUND
Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR).
RESULTS
Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose.
CONCLUSIONS
Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.5953 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371520518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371520518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqEw8A8iMTGkvX4nI1SUhyqxZLcc26GOkrg4KbT_npSyMt3hfOdc6UPoFsMcA5BFY8ZqzgtOz1CCoZAZEwLOUQJE5Bnhkl-iq2FoAEDkRCRIlhuvOzduwl53aXRd-NJtWh3SlevH0Ke6t2nlQxs-vJmCsPdWjz701-ii1u3gbv7uDJWrp3L5kq3fn1-XD-vMUMpoZljBC60xqw1zUjuDLStqKg3UlGGLpc5JxUhB8twxYTVIImxNJHVcY1vRGbo7zW5j-Ny5YVRN2MV--qgIlZgT4DifqPsTZWIYhuhqtY2-0_GgMKijFnXUoo5aJnZxYr996w7_g-ptWT7-Nn4Afatj5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371520518</pqid></control><display><type>article</type><title>Thiamethoxam removal by Fenton and biological oxidation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</creator><creatorcontrib>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</creatorcontrib><description>BACKGROUND
Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR).
RESULTS
Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose.
CONCLUSIONS
Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5953</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Batch reactors ; Biodegradability ; Biodegradation ; Biological oxidation ; Biological treatment ; Chemical oxygen demand ; Conversion ; Coupling ; Dosage ; ecotoxicity ; Effluents ; Fenton's reagent ; Fentons reagent ; Hydrogen peroxide ; Insecticides ; Organic carbon ; Oxidation ; pesticide ; Pollutants ; Reagents ; sequencing batch reactor ; Thiamethoxam ; Total organic carbon</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-04, Vol.95 (4), p.913-921</ispartof><rights>2019 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</citedby><cites>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</cites><orcidid>0000-0003-0912-7713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomez‐Herrero, Esther</creatorcontrib><creatorcontrib>Lebik‐ElHadi, Hafida</creatorcontrib><creatorcontrib>Ait‐Amar, Hamid</creatorcontrib><creatorcontrib>Tobajas, Montserrat</creatorcontrib><creatorcontrib>Rodriguez, Juan J</creatorcontrib><creatorcontrib>Mohedano, Angel F</creatorcontrib><title>Thiamethoxam removal by Fenton and biological oxidation</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR).
RESULTS
Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose.
CONCLUSIONS
Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</description><subject>Batch reactors</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biological oxidation</subject><subject>Biological treatment</subject><subject>Chemical oxygen demand</subject><subject>Conversion</subject><subject>Coupling</subject><subject>Dosage</subject><subject>ecotoxicity</subject><subject>Effluents</subject><subject>Fenton's reagent</subject><subject>Fentons reagent</subject><subject>Hydrogen peroxide</subject><subject>Insecticides</subject><subject>Organic carbon</subject><subject>Oxidation</subject><subject>pesticide</subject><subject>Pollutants</subject><subject>Reagents</subject><subject>sequencing batch reactor</subject><subject>Thiamethoxam</subject><subject>Total organic carbon</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqEw8A8iMTGkvX4nI1SUhyqxZLcc26GOkrg4KbT_npSyMt3hfOdc6UPoFsMcA5BFY8ZqzgtOz1CCoZAZEwLOUQJE5Bnhkl-iq2FoAEDkRCRIlhuvOzduwl53aXRd-NJtWh3SlevH0Ke6t2nlQxs-vJmCsPdWjz701-ii1u3gbv7uDJWrp3L5kq3fn1-XD-vMUMpoZljBC60xqw1zUjuDLStqKg3UlGGLpc5JxUhB8twxYTVIImxNJHVcY1vRGbo7zW5j-Ny5YVRN2MV--qgIlZgT4DifqPsTZWIYhuhqtY2-0_GgMKijFnXUoo5aJnZxYr996w7_g-ptWT7-Nn4Afatj5Q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Gomez‐Herrero, Esther</creator><creator>Lebik‐ElHadi, Hafida</creator><creator>Ait‐Amar, Hamid</creator><creator>Tobajas, Montserrat</creator><creator>Rodriguez, Juan J</creator><creator>Mohedano, Angel F</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0912-7713</orcidid></search><sort><creationdate>202004</creationdate><title>Thiamethoxam removal by Fenton and biological oxidation</title><author>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batch reactors</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biological oxidation</topic><topic>Biological treatment</topic><topic>Chemical oxygen demand</topic><topic>Conversion</topic><topic>Coupling</topic><topic>Dosage</topic><topic>ecotoxicity</topic><topic>Effluents</topic><topic>Fenton's reagent</topic><topic>Fentons reagent</topic><topic>Hydrogen peroxide</topic><topic>Insecticides</topic><topic>Organic carbon</topic><topic>Oxidation</topic><topic>pesticide</topic><topic>Pollutants</topic><topic>Reagents</topic><topic>sequencing batch reactor</topic><topic>Thiamethoxam</topic><topic>Total organic carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez‐Herrero, Esther</creatorcontrib><creatorcontrib>Lebik‐ElHadi, Hafida</creatorcontrib><creatorcontrib>Ait‐Amar, Hamid</creatorcontrib><creatorcontrib>Tobajas, Montserrat</creatorcontrib><creatorcontrib>Rodriguez, Juan J</creatorcontrib><creatorcontrib>Mohedano, Angel F</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez‐Herrero, Esther</au><au>Lebik‐ElHadi, Hafida</au><au>Ait‐Amar, Hamid</au><au>Tobajas, Montserrat</au><au>Rodriguez, Juan J</au><au>Mohedano, Angel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thiamethoxam removal by Fenton and biological oxidation</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>95</volume><issue>4</issue><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR).
RESULTS
Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose.
CONCLUSIONS
Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.5953</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0912-7713</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2020-04, Vol.95 (4), p.913-921 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_2371520518 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Batch reactors Biodegradability Biodegradation Biological oxidation Biological treatment Chemical oxygen demand Conversion Coupling Dosage ecotoxicity Effluents Fenton's reagent Fentons reagent Hydrogen peroxide Insecticides Organic carbon Oxidation pesticide Pollutants Reagents sequencing batch reactor Thiamethoxam Total organic carbon |
title | Thiamethoxam removal by Fenton and biological oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thiamethoxam%20removal%20by%20Fenton%20and%20biological%20oxidation&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Gomez%E2%80%90Herrero,%20Esther&rft.date=2020-04&rft.volume=95&rft.issue=4&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5953&rft_dat=%3Cproquest_cross%3E2371520518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371520518&rft_id=info:pmid/&rfr_iscdi=true |