Loading…

Thiamethoxam removal by Fenton and biological oxidation

BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2020-04, Vol.95 (4), p.913-921
Main Authors: Gomez‐Herrero, Esther, Lebik‐ElHadi, Hafida, Ait‐Amar, Hamid, Tobajas, Montserrat, Rodriguez, Juan J, Mohedano, Angel F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3
cites cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3
container_end_page 921
container_issue 4
container_start_page 913
container_title Journal of chemical technology and biotechnology (1986)
container_volume 95
creator Gomez‐Herrero, Esther
Lebik‐ElHadi, Hafida
Ait‐Amar, Hamid
Tobajas, Montserrat
Rodriguez, Juan J
Mohedano, Angel F
description BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR). RESULTS Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose. CONCLUSIONS Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry
doi_str_mv 10.1002/jctb.5953
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371520518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371520518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqEw8A8iMTGkvX4nI1SUhyqxZLcc26GOkrg4KbT_npSyMt3hfOdc6UPoFsMcA5BFY8ZqzgtOz1CCoZAZEwLOUQJE5Bnhkl-iq2FoAEDkRCRIlhuvOzduwl53aXRd-NJtWh3SlevH0Ke6t2nlQxs-vJmCsPdWjz701-ii1u3gbv7uDJWrp3L5kq3fn1-XD-vMUMpoZljBC60xqw1zUjuDLStqKg3UlGGLpc5JxUhB8twxYTVIImxNJHVcY1vRGbo7zW5j-Ny5YVRN2MV--qgIlZgT4DifqPsTZWIYhuhqtY2-0_GgMKijFnXUoo5aJnZxYr996w7_g-ptWT7-Nn4Afatj5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371520518</pqid></control><display><type>article</type><title>Thiamethoxam removal by Fenton and biological oxidation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</creator><creatorcontrib>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</creatorcontrib><description>BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR). RESULTS Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose. CONCLUSIONS Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5953</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Batch reactors ; Biodegradability ; Biodegradation ; Biological oxidation ; Biological treatment ; Chemical oxygen demand ; Conversion ; Coupling ; Dosage ; ecotoxicity ; Effluents ; Fenton's reagent ; Fentons reagent ; Hydrogen peroxide ; Insecticides ; Organic carbon ; Oxidation ; pesticide ; Pollutants ; Reagents ; sequencing batch reactor ; Thiamethoxam ; Total organic carbon</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2020-04, Vol.95 (4), p.913-921</ispartof><rights>2019 Society of Chemical Industry</rights><rights>Copyright © 2020 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</citedby><cites>FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</cites><orcidid>0000-0003-0912-7713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomez‐Herrero, Esther</creatorcontrib><creatorcontrib>Lebik‐ElHadi, Hafida</creatorcontrib><creatorcontrib>Ait‐Amar, Hamid</creatorcontrib><creatorcontrib>Tobajas, Montserrat</creatorcontrib><creatorcontrib>Rodriguez, Juan J</creatorcontrib><creatorcontrib>Mohedano, Angel F</creatorcontrib><title>Thiamethoxam removal by Fenton and biological oxidation</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR). RESULTS Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose. CONCLUSIONS Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</description><subject>Batch reactors</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biological oxidation</subject><subject>Biological treatment</subject><subject>Chemical oxygen demand</subject><subject>Conversion</subject><subject>Coupling</subject><subject>Dosage</subject><subject>ecotoxicity</subject><subject>Effluents</subject><subject>Fenton's reagent</subject><subject>Fentons reagent</subject><subject>Hydrogen peroxide</subject><subject>Insecticides</subject><subject>Organic carbon</subject><subject>Oxidation</subject><subject>pesticide</subject><subject>Pollutants</subject><subject>Reagents</subject><subject>sequencing batch reactor</subject><subject>Thiamethoxam</subject><subject>Total organic carbon</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqEw8A8iMTGkvX4nI1SUhyqxZLcc26GOkrg4KbT_npSyMt3hfOdc6UPoFsMcA5BFY8ZqzgtOz1CCoZAZEwLOUQJE5Bnhkl-iq2FoAEDkRCRIlhuvOzduwl53aXRd-NJtWh3SlevH0Ke6t2nlQxs-vJmCsPdWjz701-ii1u3gbv7uDJWrp3L5kq3fn1-XD-vMUMpoZljBC60xqw1zUjuDLStqKg3UlGGLpc5JxUhB8twxYTVIImxNJHVcY1vRGbo7zW5j-Ny5YVRN2MV--qgIlZgT4DifqPsTZWIYhuhqtY2-0_GgMKijFnXUoo5aJnZxYr996w7_g-ptWT7-Nn4Afatj5Q</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Gomez‐Herrero, Esther</creator><creator>Lebik‐ElHadi, Hafida</creator><creator>Ait‐Amar, Hamid</creator><creator>Tobajas, Montserrat</creator><creator>Rodriguez, Juan J</creator><creator>Mohedano, Angel F</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0912-7713</orcidid></search><sort><creationdate>202004</creationdate><title>Thiamethoxam removal by Fenton and biological oxidation</title><author>Gomez‐Herrero, Esther ; Lebik‐ElHadi, Hafida ; Ait‐Amar, Hamid ; Tobajas, Montserrat ; Rodriguez, Juan J ; Mohedano, Angel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batch reactors</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biological oxidation</topic><topic>Biological treatment</topic><topic>Chemical oxygen demand</topic><topic>Conversion</topic><topic>Coupling</topic><topic>Dosage</topic><topic>ecotoxicity</topic><topic>Effluents</topic><topic>Fenton's reagent</topic><topic>Fentons reagent</topic><topic>Hydrogen peroxide</topic><topic>Insecticides</topic><topic>Organic carbon</topic><topic>Oxidation</topic><topic>pesticide</topic><topic>Pollutants</topic><topic>Reagents</topic><topic>sequencing batch reactor</topic><topic>Thiamethoxam</topic><topic>Total organic carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez‐Herrero, Esther</creatorcontrib><creatorcontrib>Lebik‐ElHadi, Hafida</creatorcontrib><creatorcontrib>Ait‐Amar, Hamid</creatorcontrib><creatorcontrib>Tobajas, Montserrat</creatorcontrib><creatorcontrib>Rodriguez, Juan J</creatorcontrib><creatorcontrib>Mohedano, Angel F</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez‐Herrero, Esther</au><au>Lebik‐ElHadi, Hafida</au><au>Ait‐Amar, Hamid</au><au>Tobajas, Montserrat</au><au>Rodriguez, Juan J</au><au>Mohedano, Angel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thiamethoxam removal by Fenton and biological oxidation</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>95</volume><issue>4</issue><spage>913</spage><epage>921</epage><pages>913-921</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Thiamethoxam (TMX) is a potential insecticide pollutant of hydric resources that must be removed. Advanced oxidation processes (AOPs) are usually effective, but expensive to implement. Combining Fenton's reagent with biological oxidation circumvents the shortcomings of Fenton technology, facilitating the biodegradation of the resulting effluents in a sequencing batch reactor (SBR). RESULTS Fenton‐like oxidation of TMX with variable hydrogen peroxide (H2O2) doses afforded total organic carbon (TOC) conversion and chemical oxygen demand (COD) removal by (respectively) 40% and 80% from pure TMX, and 40% and 60% from commercial TMX. The effluents from Fenton oxidation using substoichiometric H2O2 doses were less ecotoxic and more biodegradable than the initial solution and, therefore, susceptible to a biological treatment. Biological oxidation of effluents obtained from 50% and 75% H2O2 doses was accomplished for different organic loads in 6‐h cycles. Coupling Fenton and biological oxidation of TMX afforded TOC conversion and COD removal of 80% for the effluent obtained with a 75% H2O2 dose. CONCLUSIONS Coupling Fenton–biological oxidation efficiently reduces the amounts of H2O2 needed and produces biodegradable effluents. In addition, the biological treatment increases COD and TOC removal by ≤80% for the overall treatment. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.5953</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0912-7713</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2020-04, Vol.95 (4), p.913-921
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2371520518
source Wiley-Blackwell Read & Publish Collection
subjects Batch reactors
Biodegradability
Biodegradation
Biological oxidation
Biological treatment
Chemical oxygen demand
Conversion
Coupling
Dosage
ecotoxicity
Effluents
Fenton's reagent
Fentons reagent
Hydrogen peroxide
Insecticides
Organic carbon
Oxidation
pesticide
Pollutants
Reagents
sequencing batch reactor
Thiamethoxam
Total organic carbon
title Thiamethoxam removal by Fenton and biological oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thiamethoxam%20removal%20by%20Fenton%20and%20biological%20oxidation&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Gomez%E2%80%90Herrero,%20Esther&rft.date=2020-04&rft.volume=95&rft.issue=4&rft.spage=913&rft.epage=921&rft.pages=913-921&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5953&rft_dat=%3Cproquest_cross%3E2371520518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3343-c4959aa14fc4e7aec1d49f37c0f341d17a82b429288e46da0726df273e5a1db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371520518&rft_id=info:pmid/&rfr_iscdi=true