Loading…

Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature

•A more competitive way to combine radiative cooling and solar heating in buildings was demonstrated.•The air conditioning system was on for only about a quarter of the day with the proposed module.•Energy saving modeling indicated the superiority of the proposed module.•Challenges in the direct way...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2020-02, Vol.205, p.112395, Article 112395
Main Authors: Liu, Junwei, Zhou, Zhihua, Zhang, Debao, Jiao, Shifei, Zhang, Ji, Gao, Feng, Ling, Jihong, Feng, Wei, Zuo, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•A more competitive way to combine radiative cooling and solar heating in buildings was demonstrated.•The air conditioning system was on for only about a quarter of the day with the proposed module.•Energy saving modeling indicated the superiority of the proposed module.•Challenges in the direct way and feasible solutions were discussed. The energy crisis and environmental pollution pose great challenges to human development. Traditional vapor-compression cooling consumes abundant energy and leads to a series of environmental problems. Radiative cooling without energy consumption and environmental pollution holds great promise as the next generation cooling technology, applied in buildings mostly in indirect way. In this work, a temperature-regulating module was introduced for direct summer cooling and winter heating. Firstly, the summer experiments were conduct to investigate the radiative cooling performance of the module. And the results indicated that the maximum indoor temperature reached only 27.5 °C with the ambient temperature of 34 °C in low latitude areas and the air conditioning system was on for only about a quarter of the day. Subsequently, the winter experiments were performed to explore the performance of the module in cooling and heating modes. The results indicated that indoor temperature can reach 25 °C in the daytime without additional heat supply and about a quarter of the day didn’t require heating in winter. Additionally, the transient model of the module and the building revealed that the electricity saving of 42.4% (963.5 kWh) can be achieved in cooling season with the module, and that was 63.7% (1449.1 kWh) when coupling with energy storage system. Lastly, further discussion about the challenges and feasible solutions for radiative cooling to directly combine with the buildings were provided to advance the application of radiative cooling. Furthermore, with an acceptable payback period of 8 years, the maximum acceptable incremental cost reached 26.2 $/m2. The work opens up a new avenue for the application mode of the daytime radiative cooling technology.
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2019.112395