Loading…

On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables

Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that...

Full description

Saved in:
Bibliographic Details
Published in:Theory of computing systems 2008-05, Vol.42 (4), p.608-631
Main Authors: Droste, Manfred, Gastin, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43
cites cdi_FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43
container_end_page 631
container_issue 4
container_start_page 608
container_title Theory of computing systems
container_volume 42
creator Droste, Manfred
Gastin, Paul
description Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that if the semiring K is idempotent and commutative, or if K is idempotent and the variables are non-commuting, then the product of any two aperiodic series is again aperiodic. We also show that if K is idempotent and the matrix monoids over K have a Burnside property (satisfied, e.g. by the tropical semiring), then the aperiodic and the star-free series coincide. This generalizes a classical result of Schützenberger (Inf. Control 4:245–270, 1961 ) for aperiodic regular languages and subsumes a result of Guaiana et al. (Theor. Comput. Sci. 97:301–311, 1992 ) on aperiodic trace languages.
doi_str_mv 10.1007/s00224-007-9064-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237221458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1451132851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF1wH715zUyWpVgrFFqoug2ZTFpS5lGTKdL-elNHcOXqngvfOZd7ELqn8EgB8qcIwJggSRIFmSCnCzSignMCQsHlj2ZEcAnX6CbGHQDwAmCElssWT_Yu-K7yFpu2wuveBDILzuFZFxpT41X35QJeJ8ZF7Fu8MqH3pq6PeNo1zaH37RZ_mOBNWbt4i642po7u7neO0fvs-W06J4vly-t0siCWy6InimW5rFgljGWcUWsl8IyJEpRyUvKyomXasw1ULFdKloXIXFY6sOnNzFrBx-hhyN2H7vPgYq933SG06aRmPGeMClkkiA6QDV2MwW30PvjGhKOmoM-16aE2fZbn2vQpedjgiYltty78Bf9v-gaPRm6x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237221458</pqid></control><display><type>article</type><title>On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Droste, Manfred ; Gastin, Paul</creator><creatorcontrib>Droste, Manfred ; Gastin, Paul</creatorcontrib><description>Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that if the semiring K is idempotent and commutative, or if K is idempotent and the variables are non-commuting, then the product of any two aperiodic series is again aperiodic. We also show that if K is idempotent and the matrix monoids over K have a Burnside property (satisfied, e.g. by the tropical semiring), then the aperiodic and the star-free series coincide. This generalizes a classical result of Schützenberger (Inf. Control 4:245–270, 1961 ) for aperiodic regular languages and subsumes a result of Guaiana et al. (Theor. Comput. Sci. 97:301–311, 1992 ) on aperiodic trace languages.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-007-9064-z</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Automation ; Boolean ; Committees ; Commuting ; Computer programming ; Computer Science ; Investigations ; Operations research ; Optimization ; Programming languages ; Studies ; Theory of Computation</subject><ispartof>Theory of computing systems, 2008-05, Vol.42 (4), p.608-631</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43</citedby><cites>FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/237221458/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/237221458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74865</link.rule.ids></links><search><creatorcontrib>Droste, Manfred</creatorcontrib><creatorcontrib>Gastin, Paul</creatorcontrib><title>On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that if the semiring K is idempotent and commutative, or if K is idempotent and the variables are non-commuting, then the product of any two aperiodic series is again aperiodic. We also show that if K is idempotent and the matrix monoids over K have a Burnside property (satisfied, e.g. by the tropical semiring), then the aperiodic and the star-free series coincide. This generalizes a classical result of Schützenberger (Inf. Control 4:245–270, 1961 ) for aperiodic regular languages and subsumes a result of Guaiana et al. (Theor. Comput. Sci. 97:301–311, 1992 ) on aperiodic trace languages.</description><subject>Automation</subject><subject>Boolean</subject><subject>Committees</subject><subject>Commuting</subject><subject>Computer programming</subject><subject>Computer Science</subject><subject>Investigations</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Programming languages</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF1wH715zUyWpVgrFFqoug2ZTFpS5lGTKdL-elNHcOXqngvfOZd7ELqn8EgB8qcIwJggSRIFmSCnCzSignMCQsHlj2ZEcAnX6CbGHQDwAmCElssWT_Yu-K7yFpu2wuveBDILzuFZFxpT41X35QJeJ8ZF7Fu8MqH3pq6PeNo1zaH37RZ_mOBNWbt4i642po7u7neO0fvs-W06J4vly-t0siCWy6InimW5rFgljGWcUWsl8IyJEpRyUvKyomXasw1ULFdKloXIXFY6sOnNzFrBx-hhyN2H7vPgYq933SG06aRmPGeMClkkiA6QDV2MwW30PvjGhKOmoM-16aE2fZbn2vQpedjgiYltty78Bf9v-gaPRm6x</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Droste, Manfred</creator><creator>Gastin, Paul</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables</title><author>Droste, Manfred ; Gastin, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Automation</topic><topic>Boolean</topic><topic>Committees</topic><topic>Commuting</topic><topic>Computer programming</topic><topic>Computer Science</topic><topic>Investigations</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Programming languages</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Droste, Manfred</creatorcontrib><creatorcontrib>Gastin, Paul</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Droste, Manfred</au><au>Gastin, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>42</volume><issue>4</issue><spage>608</spage><epage>631</epage><pages>608-631</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>Formal power series over non-commuting variables have been investigated as representations of the behavior of automata with multiplicities. Here we introduce and investigate the concepts of aperiodic and of star-free formal power series over semirings and partially commuting variables. We prove that if the semiring K is idempotent and commutative, or if K is idempotent and the variables are non-commuting, then the product of any two aperiodic series is again aperiodic. We also show that if K is idempotent and the matrix monoids over K have a Burnside property (satisfied, e.g. by the tropical semiring), then the aperiodic and the star-free series coincide. This generalizes a classical result of Schützenberger (Inf. Control 4:245–270, 1961 ) for aperiodic regular languages and subsumes a result of Guaiana et al. (Theor. Comput. Sci. 97:301–311, 1992 ) on aperiodic trace languages.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00224-007-9064-z</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2008-05, Vol.42 (4), p.608-631
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_237221458
source EBSCOhost Business Source Ultimate; ABI/INFORM global; Springer Nature
subjects Automation
Boolean
Committees
Commuting
Computer programming
Computer Science
Investigations
Operations research
Optimization
Programming languages
Studies
Theory of Computation
title On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Aperiodic%20and%20Star-Free%20Formal%20Power%20Series%20in%20Partially%20Commuting%20Variables&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Droste,%20Manfred&rft.date=2008-05-01&rft.volume=42&rft.issue=4&rft.spage=608&rft.epage=631&rft.pages=608-631&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-007-9064-z&rft_dat=%3Cproquest_cross%3E1451132851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-92675d2d4ac2321cc503624b099e553bd1b3626f0d27995b846e6be0c0026cc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=237221458&rft_id=info:pmid/&rfr_iscdi=true