Loading…

Approximating MIN 2-SAT and MIN 3-SAT

We obtain substantially improved approximation algorithms for the MIN k-SAT problem, for k = 2,3. More specifically, we obtain a 1.1037-approximation algorithm for the MIN 2-SAT problem, improving a previous 1.5-approximation algorithm, and a 1.2136-approximation algorithm for the MIN 3-SAT problem,...

Full description

Saved in:
Bibliographic Details
Published in:Theory of computing systems 2005-05, Vol.38 (3), p.329-345
Main Authors: Avidor, Adi, Zwick, Uri
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c272t-ad65f66551a5ce9bd04bba6e804a2c9cbb65a306d0ef961f0c1a1179d25624173
cites
container_end_page 345
container_issue 3
container_start_page 329
container_title Theory of computing systems
container_volume 38
creator Avidor, Adi
Zwick, Uri
description We obtain substantially improved approximation algorithms for the MIN k-SAT problem, for k = 2,3. More specifically, we obtain a 1.1037-approximation algorithm for the MIN 2-SAT problem, improving a previous 1.5-approximation algorithm, and a 1.2136-approximation algorithm for the MIN 3-SAT problem, improving a previous 1.75-approximation algorithm for the problem. These results are obtained by adapting techniques that were previously used to obtain approximation algorithms for the MAX k-SAT problem. We also obtain some hardness of approximation results. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00224-005-1140-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237223273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>834950061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-ad65f66551a5ce9bd04bba6e804a2c9cbb65a306d0ef961f0c1a1179d25624173</originalsourceid><addsrcrecordid>eNotkE9Lw0AQxRdRsFY_gLcgeFydmf3XHEPRWqh6sJ6XzWYjLZrE3RT025s0nt48eMx7_Bi7RrhDAHOfAIgkB1AcUQI3J2yGUggOMofT401cCgXn7CKlPQCIBcCM3RZdF9uf3Zfrd81H9rx-yYi_FdvMNdXRidFdsrPafaZw9a9z9v74sF0-8c3rar0sNtyToZ67Sqtaa6XQKR_ysgJZlk6HBUhHPvdlqZUToCsIda6xBo8O0eQVKU0SjZizm-nvsOn7EFJv9-0hNkOlJWGIBBkxhHAK-dimFENtuzjsj78WwY4w7ATDDjDsCMMa8QfhZ02r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237223273</pqid></control><display><type>article</type><title>Approximating MIN 2-SAT and MIN 3-SAT</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Avidor, Adi ; Zwick, Uri</creator><creatorcontrib>Avidor, Adi ; Zwick, Uri</creatorcontrib><description>We obtain substantially improved approximation algorithms for the MIN k-SAT problem, for k = 2,3. More specifically, we obtain a 1.1037-approximation algorithm for the MIN 2-SAT problem, improving a previous 1.5-approximation algorithm, and a 1.2136-approximation algorithm for the MIN 3-SAT problem, improving a previous 1.75-approximation algorithm for the problem. These results are obtained by adapting techniques that were previously used to obtain approximation algorithms for the MAX k-SAT problem. We also obtain some hardness of approximation results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-005-1140-7</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Boolean ; Computer science ; Linear programming ; Random variables ; Semidefinite programming ; Studies</subject><ispartof>Theory of computing systems, 2005-05, Vol.38 (3), p.329-345</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-ad65f66551a5ce9bd04bba6e804a2c9cbb65a306d0ef961f0c1a1179d25624173</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/237223273/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/237223273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Avidor, Adi</creatorcontrib><creatorcontrib>Zwick, Uri</creatorcontrib><title>Approximating MIN 2-SAT and MIN 3-SAT</title><title>Theory of computing systems</title><description>We obtain substantially improved approximation algorithms for the MIN k-SAT problem, for k = 2,3. More specifically, we obtain a 1.1037-approximation algorithm for the MIN 2-SAT problem, improving a previous 1.5-approximation algorithm, and a 1.2136-approximation algorithm for the MIN 3-SAT problem, improving a previous 1.75-approximation algorithm for the problem. These results are obtained by adapting techniques that were previously used to obtain approximation algorithms for the MAX k-SAT problem. We also obtain some hardness of approximation results. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boolean</subject><subject>Computer science</subject><subject>Linear programming</subject><subject>Random variables</subject><subject>Semidefinite programming</subject><subject>Studies</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNotkE9Lw0AQxRdRsFY_gLcgeFydmf3XHEPRWqh6sJ6XzWYjLZrE3RT025s0nt48eMx7_Bi7RrhDAHOfAIgkB1AcUQI3J2yGUggOMofT401cCgXn7CKlPQCIBcCM3RZdF9uf3Zfrd81H9rx-yYi_FdvMNdXRidFdsrPafaZw9a9z9v74sF0-8c3rar0sNtyToZ67Sqtaa6XQKR_ysgJZlk6HBUhHPvdlqZUToCsIda6xBo8O0eQVKU0SjZizm-nvsOn7EFJv9-0hNkOlJWGIBBkxhHAK-dimFENtuzjsj78WwY4w7ATDDjDsCMMa8QfhZ02r</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Avidor, Adi</creator><creator>Zwick, Uri</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200505</creationdate><title>Approximating MIN 2-SAT and MIN 3-SAT</title><author>Avidor, Adi ; Zwick, Uri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-ad65f66551a5ce9bd04bba6e804a2c9cbb65a306d0ef961f0c1a1179d25624173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boolean</topic><topic>Computer science</topic><topic>Linear programming</topic><topic>Random variables</topic><topic>Semidefinite programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avidor, Adi</creatorcontrib><creatorcontrib>Zwick, Uri</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avidor, Adi</au><au>Zwick, Uri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating MIN 2-SAT and MIN 3-SAT</atitle><jtitle>Theory of computing systems</jtitle><date>2005-05</date><risdate>2005</risdate><volume>38</volume><issue>3</issue><spage>329</spage><epage>345</epage><pages>329-345</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We obtain substantially improved approximation algorithms for the MIN k-SAT problem, for k = 2,3. More specifically, we obtain a 1.1037-approximation algorithm for the MIN 2-SAT problem, improving a previous 1.5-approximation algorithm, and a 1.2136-approximation algorithm for the MIN 3-SAT problem, improving a previous 1.75-approximation algorithm for the problem. These results are obtained by adapting techniques that were previously used to obtain approximation algorithms for the MAX k-SAT problem. We also obtain some hardness of approximation results. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00224-005-1140-7</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2005-05, Vol.38 (3), p.329-345
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_237223273
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Algorithms
Approximation
Boolean
Computer science
Linear programming
Random variables
Semidefinite programming
Studies
title Approximating MIN 2-SAT and MIN 3-SAT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20MIN%202-SAT%20and%20MIN%203-SAT&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Avidor,%20Adi&rft.date=2005-05&rft.volume=38&rft.issue=3&rft.spage=329&rft.epage=345&rft.pages=329-345&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-005-1140-7&rft_dat=%3Cproquest_cross%3E834950061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-ad65f66551a5ce9bd04bba6e804a2c9cbb65a306d0ef961f0c1a1179d25624173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=237223273&rft_id=info:pmid/&rfr_iscdi=true