Loading…

The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs

We propose an incremental algorithm to maintain a DFS-forest in a directed acyclic graph under a sequence of arc insertions in O( nm) worst case total time, where n is the number of nodes and m is the number of arcs after the insertions. This compares favorably with the time required to recompute DF...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters 1997-01, Vol.61 (2), p.113-120
Main Authors: Franciosa, Paolo G., Gambosi, Giorgio, Nanni, Umberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213
cites cdi_FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213
container_end_page 120
container_issue 2
container_start_page 113
container_title Information processing letters
container_volume 61
creator Franciosa, Paolo G.
Gambosi, Giorgio
Nanni, Umberto
description We propose an incremental algorithm to maintain a DFS-forest in a directed acyclic graph under a sequence of arc insertions in O( nm) worst case total time, where n is the number of nodes and m is the number of arcs after the insertions. This compares favorably with the time required to recompute DFS from scratch by using Tarjan's Θ( n + m) algorithm any time a sequence of Ω(n) arc insertions must be handled. In particular, over a sequence of Θ( m) arc insertions our algorithm requires O( n) amortized time per operation, and its worst case time is O( n + m). Our algorithm relies on an original characterization of a DFS-forest in terms of a relaxed planar embedding of the graph. Besides the basic representation of the graphs in term of adjacency lists, O( n) additional space is required. Although the problem of the dynamic maintenance of a DFS-tree was pointed out about one decade ago, this paper provides the first solution to this problem for nontrivial classes of graphs.
doi_str_mv 10.1016/S0020-0190(96)00202-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237277770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019096002025</els_id><sourcerecordid>11333459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKcfQQjiQQ_V_GnT5iQynQoDD5vnkCVvbUbXzqQT9u1N17GruYTA8_u9bx6Eril5oISKxzkhjCSESnInxX3_YEl2gka0yFkiKJWnaHREztFFCCtCiEh5PkLzRQXYNcbDGppO13itXdNBoxsDuC2xxi-w6apk6nzokjlobyrceehD2DoPpgOLtdmZ2hn87fWmCpforNR1gKvDPUZf09fF5D2Zfb59TJ5niUmZ7JJlmaeysFwQm8uSC8Zzni3j8mnJZWFKTk2WGkh1Lizh1lqdUcNzCVJnfMkoH6OboXfj258thE6t2q1v4kgVu1geD4lQNkDGtyF4KNXGu7X2O0WJ6vWpvT7Vu1FSqL0-lcXc7aFcB6Pr0kcjLhzDTLCCpjJiTwMG8aO_DrwKxkGUN7hRtnX_DPoDxV2CcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237277770</pqid></control><display><type>article</type><title>The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><creator>Franciosa, Paolo G. ; Gambosi, Giorgio ; Nanni, Umberto</creator><creatorcontrib>Franciosa, Paolo G. ; Gambosi, Giorgio ; Nanni, Umberto</creatorcontrib><description>We propose an incremental algorithm to maintain a DFS-forest in a directed acyclic graph under a sequence of arc insertions in O( nm) worst case total time, where n is the number of nodes and m is the number of arcs after the insertions. This compares favorably with the time required to recompute DFS from scratch by using Tarjan's Θ( n + m) algorithm any time a sequence of Ω(n) arc insertions must be handled. In particular, over a sequence of Θ( m) arc insertions our algorithm requires O( n) amortized time per operation, and its worst case time is O( n + m). Our algorithm relies on an original characterization of a DFS-forest in terms of a relaxed planar embedding of the graph. Besides the basic representation of the graphs in term of adjacency lists, O( n) additional space is required. Although the problem of the dynamic maintenance of a DFS-tree was pointed out about one decade ago, this paper provides the first solution to this problem for nontrivial classes of graphs.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(96)00202-5</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Analysis of algorithms ; Applied sciences ; Computer science ; Computer science; control theory; systems ; Decision trees ; Depth-first search ; Design of algorithms ; Exact sciences and technology ; Graphs ; Information processing ; Information retrieval. Graph ; Studies ; Theoretical computing ; Theory</subject><ispartof>Information processing letters, 1997-01, Vol.61 (2), p.113-120</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jan 28, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213</citedby><cites>FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019096002025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2628149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franciosa, Paolo G.</creatorcontrib><creatorcontrib>Gambosi, Giorgio</creatorcontrib><creatorcontrib>Nanni, Umberto</creatorcontrib><title>The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs</title><title>Information processing letters</title><description>We propose an incremental algorithm to maintain a DFS-forest in a directed acyclic graph under a sequence of arc insertions in O( nm) worst case total time, where n is the number of nodes and m is the number of arcs after the insertions. This compares favorably with the time required to recompute DFS from scratch by using Tarjan's Θ( n + m) algorithm any time a sequence of Ω(n) arc insertions must be handled. In particular, over a sequence of Θ( m) arc insertions our algorithm requires O( n) amortized time per operation, and its worst case time is O( n + m). Our algorithm relies on an original characterization of a DFS-forest in terms of a relaxed planar embedding of the graph. Besides the basic representation of the graphs in term of adjacency lists, O( n) additional space is required. Although the problem of the dynamic maintenance of a DFS-tree was pointed out about one decade ago, this paper provides the first solution to this problem for nontrivial classes of graphs.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Analysis of algorithms</subject><subject>Applied sciences</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Decision trees</subject><subject>Depth-first search</subject><subject>Design of algorithms</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Information retrieval. Graph</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Theory</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4MoOKcfQQjiQQ_V_GnT5iQynQoDD5vnkCVvbUbXzqQT9u1N17GruYTA8_u9bx6Eril5oISKxzkhjCSESnInxX3_YEl2gka0yFkiKJWnaHREztFFCCtCiEh5PkLzRQXYNcbDGppO13itXdNBoxsDuC2xxi-w6apk6nzokjlobyrceehD2DoPpgOLtdmZ2hn87fWmCpforNR1gKvDPUZf09fF5D2Zfb59TJ5niUmZ7JJlmaeysFwQm8uSC8Zzni3j8mnJZWFKTk2WGkh1Lizh1lqdUcNzCVJnfMkoH6OboXfj258thE6t2q1v4kgVu1geD4lQNkDGtyF4KNXGu7X2O0WJ6vWpvT7Vu1FSqL0-lcXc7aFcB6Pr0kcjLhzDTLCCpjJiTwMG8aO_DrwKxkGUN7hRtnX_DPoDxV2CcA</recordid><startdate>19970128</startdate><enddate>19970128</enddate><creator>Franciosa, Paolo G.</creator><creator>Gambosi, Giorgio</creator><creator>Nanni, Umberto</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970128</creationdate><title>The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs</title><author>Franciosa, Paolo G. ; Gambosi, Giorgio ; Nanni, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Analysis of algorithms</topic><topic>Applied sciences</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Decision trees</topic><topic>Depth-first search</topic><topic>Design of algorithms</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Information retrieval. Graph</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franciosa, Paolo G.</creatorcontrib><creatorcontrib>Gambosi, Giorgio</creatorcontrib><creatorcontrib>Nanni, Umberto</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franciosa, Paolo G.</au><au>Gambosi, Giorgio</au><au>Nanni, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs</atitle><jtitle>Information processing letters</jtitle><date>1997-01-28</date><risdate>1997</risdate><volume>61</volume><issue>2</issue><spage>113</spage><epage>120</epage><pages>113-120</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We propose an incremental algorithm to maintain a DFS-forest in a directed acyclic graph under a sequence of arc insertions in O( nm) worst case total time, where n is the number of nodes and m is the number of arcs after the insertions. This compares favorably with the time required to recompute DFS from scratch by using Tarjan's Θ( n + m) algorithm any time a sequence of Ω(n) arc insertions must be handled. In particular, over a sequence of Θ( m) arc insertions our algorithm requires O( n) amortized time per operation, and its worst case time is O( n + m). Our algorithm relies on an original characterization of a DFS-forest in terms of a relaxed planar embedding of the graph. Besides the basic representation of the graphs in term of adjacency lists, O( n) additional space is required. Although the problem of the dynamic maintenance of a DFS-tree was pointed out about one decade ago, this paper provides the first solution to this problem for nontrivial classes of graphs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(96)00202-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1997-01, Vol.61 (2), p.113-120
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237277770
source ScienceDirect: Mathematics Backfile; ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Analysis of algorithms
Applied sciences
Computer science
Computer science
control theory
systems
Decision trees
Depth-first search
Design of algorithms
Exact sciences and technology
Graphs
Information processing
Information retrieval. Graph
Studies
Theoretical computing
Theory
title The incremental maintenance of a Depth-First-Search tree in directed acyclic graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20incremental%20maintenance%20of%20a%20Depth-First-Search%20tree%20in%20directed%20acyclic%20graphs&rft.jtitle=Information%20processing%20letters&rft.au=Franciosa,%20Paolo%20G.&rft.date=1997-01-28&rft.volume=61&rft.issue=2&rft.spage=113&rft.epage=120&rft.pages=113-120&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(96)00202-5&rft_dat=%3Cproquest_cross%3E11333459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-bf7498d360d79f3623735b2024f398cf31c54ce4a76d03ddda51c379e9a53b213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=237277770&rft_id=info:pmid/&rfr_iscdi=true