Loading…

Guarding in a simple polygon

Guarding in a simple polygon was motivated by art gallery problems. A guard capable of moving along a line segment in a polygon is called a mobile guard. In this paper, we discuss about two different degrees of patrol freedom of mobile guards. First, a guard diagonal is an internal diagonal that a m...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters 2000-09, Vol.75 (4), p.153-158
Main Authors: Lu, Bor-Kuan, Hsu, Fang-Rong, Tang, Chuan Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73
cites cdi_FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73
container_end_page 158
container_issue 4
container_start_page 153
container_title Information processing letters
container_volume 75
creator Lu, Bor-Kuan
Hsu, Fang-Rong
Tang, Chuan Yi
description Guarding in a simple polygon was motivated by art gallery problems. A guard capable of moving along a line segment in a polygon is called a mobile guard. In this paper, we discuss about two different degrees of patrol freedom of mobile guards. First, a guard diagonal is an internal diagonal that a mobile guard moving along the diagonal in a polygon and every interior point of the polygon can be seen by the mobile guard. Second, a guard chord is an internal chord that a mobile guard moving along the chord in a polygon and every interior point of the polygon can be seen by the mobile guard. In this paper, we solve the problem of finding the longest guard diagonal in O(n) time, the shortest guard diagonal in O(nα(n)) and the longest guard chord in O(n) time of a simple polygon P with n vertices, where α(n) is the inverse of Ackermann's function.
doi_str_mv 10.1016/S0020-0190(00)00100-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237280265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019000001009</els_id><sourcerecordid>60684741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMoWFf_gUIRD3qoziRN2pxEFl2FBQ_qOWTTZMnSbWvSFfbf27qLHoWBuXzvvZlHyAXCLQKKuzcAChmghGuAGwAEyOQBSbAsaCYQ5SFJfpFjchLjCgBEzoqEnM82OlS-Waa-SXUa_bqrbdq19XbZNqfkyOk62rP9npCPp8f36XM2f529TB_mmWGC9RlDmfMFGhAoNTdUSpSVkAgLI1huOKXoXJGLQiAYoJLDgnPnoAKOjlUFm5DLnW8X2s-Njb1atZvQDJGKsoKWQAUfIL6DTGhjDNapLvi1DluFoMYe1E8PanxSwThDD0oOuqu9uY5G1y7oxvj4J87LvKTjDfc7zA6PfnkbVDTeNsZWPljTq6r1_wR9A7TWbQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237280265</pqid></control><display><type>article</type><title>Guarding in a simple polygon</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Lu, Bor-Kuan ; Hsu, Fang-Rong ; Tang, Chuan Yi</creator><creatorcontrib>Lu, Bor-Kuan ; Hsu, Fang-Rong ; Tang, Chuan Yi</creatorcontrib><description>Guarding in a simple polygon was motivated by art gallery problems. A guard capable of moving along a line segment in a polygon is called a mobile guard. In this paper, we discuss about two different degrees of patrol freedom of mobile guards. First, a guard diagonal is an internal diagonal that a mobile guard moving along the diagonal in a polygon and every interior point of the polygon can be seen by the mobile guard. Second, a guard chord is an internal chord that a mobile guard moving along the chord in a polygon and every interior point of the polygon can be seen by the mobile guard. In this paper, we solve the problem of finding the longest guard diagonal in O(n) time, the shortest guard diagonal in O(nα(n)) and the longest guard chord in O(n) time of a simple polygon P with n vertices, where α(n) is the inverse of Ackermann's function.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(00)00100-9</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Art galleries &amp; museums ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph algorithms ; Graph theory ; Graphs ; Mathematics ; Optimization ; Sciences and techniques of general use ; Simple polygon ; Studies</subject><ispartof>Information processing letters, 2000-09, Vol.75 (4), p.153-158</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 30, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73</citedby><cites>FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019000001009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3564,27924,27925,45972,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1484827$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Bor-Kuan</creatorcontrib><creatorcontrib>Hsu, Fang-Rong</creatorcontrib><creatorcontrib>Tang, Chuan Yi</creatorcontrib><title>Guarding in a simple polygon</title><title>Information processing letters</title><description>Guarding in a simple polygon was motivated by art gallery problems. A guard capable of moving along a line segment in a polygon is called a mobile guard. In this paper, we discuss about two different degrees of patrol freedom of mobile guards. First, a guard diagonal is an internal diagonal that a mobile guard moving along the diagonal in a polygon and every interior point of the polygon can be seen by the mobile guard. Second, a guard chord is an internal chord that a mobile guard moving along the chord in a polygon and every interior point of the polygon can be seen by the mobile guard. In this paper, we solve the problem of finding the longest guard diagonal in O(n) time, the shortest guard diagonal in O(nα(n)) and the longest guard chord in O(n) time of a simple polygon P with n vertices, where α(n) is the inverse of Ackermann's function.</description><subject>Algorithms</subject><subject>Art galleries &amp; museums</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Sciences and techniques of general use</subject><subject>Simple polygon</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMoWFf_gUIRD3qoziRN2pxEFl2FBQ_qOWTTZMnSbWvSFfbf27qLHoWBuXzvvZlHyAXCLQKKuzcAChmghGuAGwAEyOQBSbAsaCYQ5SFJfpFjchLjCgBEzoqEnM82OlS-Waa-SXUa_bqrbdq19XbZNqfkyOk62rP9npCPp8f36XM2f529TB_mmWGC9RlDmfMFGhAoNTdUSpSVkAgLI1huOKXoXJGLQiAYoJLDgnPnoAKOjlUFm5DLnW8X2s-Njb1atZvQDJGKsoKWQAUfIL6DTGhjDNapLvi1DluFoMYe1E8PanxSwThDD0oOuqu9uY5G1y7oxvj4J87LvKTjDfc7zA6PfnkbVDTeNsZWPljTq6r1_wR9A7TWbQA</recordid><startdate>20000930</startdate><enddate>20000930</enddate><creator>Lu, Bor-Kuan</creator><creator>Hsu, Fang-Rong</creator><creator>Tang, Chuan Yi</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000930</creationdate><title>Guarding in a simple polygon</title><author>Lu, Bor-Kuan ; Hsu, Fang-Rong ; Tang, Chuan Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Art galleries &amp; museums</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Sciences and techniques of general use</topic><topic>Simple polygon</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Bor-Kuan</creatorcontrib><creatorcontrib>Hsu, Fang-Rong</creatorcontrib><creatorcontrib>Tang, Chuan Yi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Bor-Kuan</au><au>Hsu, Fang-Rong</au><au>Tang, Chuan Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guarding in a simple polygon</atitle><jtitle>Information processing letters</jtitle><date>2000-09-30</date><risdate>2000</risdate><volume>75</volume><issue>4</issue><spage>153</spage><epage>158</epage><pages>153-158</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Guarding in a simple polygon was motivated by art gallery problems. A guard capable of moving along a line segment in a polygon is called a mobile guard. In this paper, we discuss about two different degrees of patrol freedom of mobile guards. First, a guard diagonal is an internal diagonal that a mobile guard moving along the diagonal in a polygon and every interior point of the polygon can be seen by the mobile guard. Second, a guard chord is an internal chord that a mobile guard moving along the chord in a polygon and every interior point of the polygon can be seen by the mobile guard. In this paper, we solve the problem of finding the longest guard diagonal in O(n) time, the shortest guard diagonal in O(nα(n)) and the longest guard chord in O(n) time of a simple polygon P with n vertices, where α(n) is the inverse of Ackermann's function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(00)00100-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2000-09, Vol.75 (4), p.153-158
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237280265
source ScienceDirect Freedom Collection 2022-2024; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Algorithms
Art galleries & museums
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph algorithms
Graph theory
Graphs
Mathematics
Optimization
Sciences and techniques of general use
Simple polygon
Studies
title Guarding in a simple polygon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guarding%20in%20a%20simple%20polygon&rft.jtitle=Information%20processing%20letters&rft.au=Lu,%20Bor-Kuan&rft.date=2000-09-30&rft.volume=75&rft.issue=4&rft.spage=153&rft.epage=158&rft.pages=153-158&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(00)00100-9&rft_dat=%3Cproquest_cross%3E60684741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-31945b1c0619a5c29919d6910bc634c5221ff7467610c02950b55ff0d051f3d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=237280265&rft_id=info:pmid/&rfr_iscdi=true