Loading…
Generalized Solver Hybridization Using Equivalence Principle Algorithm
The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2020-03, Vol.68 (3), p.2206-2212 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3 |
container_end_page | 2212 |
container_issue | 3 |
container_start_page | 2206 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 68 |
creator | Rutherford, Joseph M. Chew, Weng Cho |
description | The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation. |
doi_str_mv | 10.1109/TAP.2019.2949379 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2374769921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8887544</ieee_id><sourcerecordid>2374769921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</originalsourceid><addsrcrecordid>eNo9kNtrwjAUh8PYYM7tfbCXwp7rcm2SRxEvA2HCFPYW0vTURWqraRX0r19E2dO58P3OgQ-hV4IHhGD9sRwuBhQTPaCaayb1HeoRIVRKKSX3qIcxUamm2c8jemrbTRy54ryHJlOoIdjKn6FIvpvqCCGZnfLgC3-2nW_qZNX6ep2M9wd_tBXUDpJF8LXzuwqSYbVugu9-t8_oobRVCy-32keryXg5mqXzr-nnaDhPHWOsS6UlTOMCGMtyJrEocewK7gh1WhAqNMHcujJXIKktHWSCWZWRuM6gZC5nffR-vbsLzf4AbWc2zSHU8aWhTHKZaU1JpPCVcqFp2wCl2QW_teFkCDYXWybaMhdb5mYrRt6uEQ8A_7hSSgrO2R8ATmWV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374769921</pqid></control><display><type>article</type><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rutherford, Joseph M. ; Chew, Weng Cho</creator><creatorcontrib>Rutherford, Joseph M. ; Chew, Weng Cho</creatorcontrib><description>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2949379</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Computational modeling ; Computer simulation ; Equivalence principle ; First principles ; Inhomogeneous media ; Integral equations ; Mathematical model ; Method of moments ; method of moments (MoM) ; Modelling ; Nonhomogeneous media ; Physical optics ; Scattering</subject><ispartof>IEEE transactions on antennas and propagation, 2020-03, Vol.68 (3), p.2206-2212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</citedby><cites>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</cites><orcidid>0000-0002-3846-3110 ; 0000-0002-1737-5760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8887544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rutherford, Joseph M.</creatorcontrib><creatorcontrib>Chew, Weng Cho</creatorcontrib><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Equivalence principle</subject><subject>First principles</subject><subject>Inhomogeneous media</subject><subject>Integral equations</subject><subject>Mathematical model</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Modelling</subject><subject>Nonhomogeneous media</subject><subject>Physical optics</subject><subject>Scattering</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kNtrwjAUh8PYYM7tfbCXwp7rcm2SRxEvA2HCFPYW0vTURWqraRX0r19E2dO58P3OgQ-hV4IHhGD9sRwuBhQTPaCaayb1HeoRIVRKKSX3qIcxUamm2c8jemrbTRy54ryHJlOoIdjKn6FIvpvqCCGZnfLgC3-2nW_qZNX6ep2M9wd_tBXUDpJF8LXzuwqSYbVugu9-t8_oobRVCy-32keryXg5mqXzr-nnaDhPHWOsS6UlTOMCGMtyJrEocewK7gh1WhAqNMHcujJXIKktHWSCWZWRuM6gZC5nffR-vbsLzf4AbWc2zSHU8aWhTHKZaU1JpPCVcqFp2wCl2QW_teFkCDYXWybaMhdb5mYrRt6uEQ8A_7hSSgrO2R8ATmWV</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rutherford, Joseph M.</creator><creator>Chew, Weng Cho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid><orcidid>https://orcid.org/0000-0002-1737-5760</orcidid></search><sort><creationdate>20200301</creationdate><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><author>Rutherford, Joseph M. ; Chew, Weng Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Equivalence principle</topic><topic>First principles</topic><topic>Inhomogeneous media</topic><topic>Integral equations</topic><topic>Mathematical model</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Modelling</topic><topic>Nonhomogeneous media</topic><topic>Physical optics</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutherford, Joseph M.</creatorcontrib><creatorcontrib>Chew, Weng Cho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutherford, Joseph M.</au><au>Chew, Weng Cho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Solver Hybridization Using Equivalence Principle Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>68</volume><issue>3</issue><spage>2206</spage><epage>2212</epage><pages>2206-2212</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2949379</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid><orcidid>https://orcid.org/0000-0002-1737-5760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2020-03, Vol.68 (3), p.2206-2212 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2374769921 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Antennas Computational modeling Computer simulation Equivalence principle First principles Inhomogeneous media Integral equations Mathematical model Method of moments method of moments (MoM) Modelling Nonhomogeneous media Physical optics Scattering |
title | Generalized Solver Hybridization Using Equivalence Principle Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Solver%20Hybridization%20Using%20Equivalence%20Principle%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Rutherford,%20Joseph%20M.&rft.date=2020-03-01&rft.volume=68&rft.issue=3&rft.spage=2206&rft.epage=2212&rft.pages=2206-2212&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2949379&rft_dat=%3Cproquest_ieee_%3E2374769921%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2374769921&rft_id=info:pmid/&rft_ieee_id=8887544&rfr_iscdi=true |