Loading…

Generalized Solver Hybridization Using Equivalence Principle Algorithm

The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2020-03, Vol.68 (3), p.2206-2212
Main Authors: Rutherford, Joseph M., Chew, Weng Cho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3
cites cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3
container_end_page 2212
container_issue 3
container_start_page 2206
container_title IEEE transactions on antennas and propagation
container_volume 68
creator Rutherford, Joseph M.
Chew, Weng Cho
description The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.
doi_str_mv 10.1109/TAP.2019.2949379
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2374769921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8887544</ieee_id><sourcerecordid>2374769921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</originalsourceid><addsrcrecordid>eNo9kNtrwjAUh8PYYM7tfbCXwp7rcm2SRxEvA2HCFPYW0vTURWqraRX0r19E2dO58P3OgQ-hV4IHhGD9sRwuBhQTPaCaayb1HeoRIVRKKSX3qIcxUamm2c8jemrbTRy54ryHJlOoIdjKn6FIvpvqCCGZnfLgC3-2nW_qZNX6ep2M9wd_tBXUDpJF8LXzuwqSYbVugu9-t8_oobRVCy-32keryXg5mqXzr-nnaDhPHWOsS6UlTOMCGMtyJrEocewK7gh1WhAqNMHcujJXIKktHWSCWZWRuM6gZC5nffR-vbsLzf4AbWc2zSHU8aWhTHKZaU1JpPCVcqFp2wCl2QW_teFkCDYXWybaMhdb5mYrRt6uEQ8A_7hSSgrO2R8ATmWV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374769921</pqid></control><display><type>article</type><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rutherford, Joseph M. ; Chew, Weng Cho</creator><creatorcontrib>Rutherford, Joseph M. ; Chew, Weng Cho</creatorcontrib><description>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2949379</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Computational modeling ; Computer simulation ; Equivalence principle ; First principles ; Inhomogeneous media ; Integral equations ; Mathematical model ; Method of moments ; method of moments (MoM) ; Modelling ; Nonhomogeneous media ; Physical optics ; Scattering</subject><ispartof>IEEE transactions on antennas and propagation, 2020-03, Vol.68 (3), p.2206-2212</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</citedby><cites>FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</cites><orcidid>0000-0002-3846-3110 ; 0000-0002-1737-5760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8887544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rutherford, Joseph M.</creatorcontrib><creatorcontrib>Chew, Weng Cho</creatorcontrib><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Equivalence principle</subject><subject>First principles</subject><subject>Inhomogeneous media</subject><subject>Integral equations</subject><subject>Mathematical model</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Modelling</subject><subject>Nonhomogeneous media</subject><subject>Physical optics</subject><subject>Scattering</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kNtrwjAUh8PYYM7tfbCXwp7rcm2SRxEvA2HCFPYW0vTURWqraRX0r19E2dO58P3OgQ-hV4IHhGD9sRwuBhQTPaCaayb1HeoRIVRKKSX3qIcxUamm2c8jemrbTRy54ryHJlOoIdjKn6FIvpvqCCGZnfLgC3-2nW_qZNX6ep2M9wd_tBXUDpJF8LXzuwqSYbVugu9-t8_oobRVCy-32keryXg5mqXzr-nnaDhPHWOsS6UlTOMCGMtyJrEocewK7gh1WhAqNMHcujJXIKktHWSCWZWRuM6gZC5nffR-vbsLzf4AbWc2zSHU8aWhTHKZaU1JpPCVcqFp2wCl2QW_teFkCDYXWybaMhdb5mYrRt6uEQ8A_7hSSgrO2R8ATmWV</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rutherford, Joseph M.</creator><creator>Chew, Weng Cho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid><orcidid>https://orcid.org/0000-0002-1737-5760</orcidid></search><sort><creationdate>20200301</creationdate><title>Generalized Solver Hybridization Using Equivalence Principle Algorithm</title><author>Rutherford, Joseph M. ; Chew, Weng Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Equivalence principle</topic><topic>First principles</topic><topic>Inhomogeneous media</topic><topic>Integral equations</topic><topic>Mathematical model</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Modelling</topic><topic>Nonhomogeneous media</topic><topic>Physical optics</topic><topic>Scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutherford, Joseph M.</creatorcontrib><creatorcontrib>Chew, Weng Cho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutherford, Joseph M.</au><au>Chew, Weng Cho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Solver Hybridization Using Equivalence Principle Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>68</volume><issue>3</issue><spage>2206</spage><epage>2212</epage><pages>2206-2212</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The simulation of antennas often necessitates modeling the effect of nearby electrically large structures. Such structures are often unsuitable for modeling with the same technique as used on the antenna because of the prohibitive required unknown count. First-principles models of antennas (or other key features) must then be augmented with approximate models of the larger auxiliary structures, usually with high-frequency asymptotic models. The surface equivalence principle is applied to linear-media multiple scattering without regard to the formulations used for each contained domain. A Schur complement is then applied to convert the homogeneous medium equivalent problem into a inhomogeneous medium equivalent problem. The Schur complement form supports application of approximate models and makes the scattering physics plain. The results are provided for two cases modeled with the equivalence principle algorithm (EPA) hybridized with physical optics (PO) approximation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2949379</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3846-3110</orcidid><orcidid>https://orcid.org/0000-0002-1737-5760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2020-03, Vol.68 (3), p.2206-2212
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2374769921
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Antennas
Computational modeling
Computer simulation
Equivalence principle
First principles
Inhomogeneous media
Integral equations
Mathematical model
Method of moments
method of moments (MoM)
Modelling
Nonhomogeneous media
Physical optics
Scattering
title Generalized Solver Hybridization Using Equivalence Principle Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Solver%20Hybridization%20Using%20Equivalence%20Principle%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Rutherford,%20Joseph%20M.&rft.date=2020-03-01&rft.volume=68&rft.issue=3&rft.spage=2206&rft.epage=2212&rft.pages=2206-2212&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2949379&rft_dat=%3Cproquest_ieee_%3E2374769921%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-7a1390de336b3705f0336d4c12c951259104acfb8e72afce653a8619106ef3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2374769921&rft_id=info:pmid/&rft_ieee_id=8887544&rfr_iscdi=true