Loading…
An investigation of spatial and temporal drinking water quality variation in green residential plumbing
Drinking water chemical quality can deteriorate after water enters building plumbing. This study aimed to better understand seasonal and spatial water quality differences in a highly monitored net-zero energy residential building. Water flow rate and temperature were monitored for one year at the se...
Saved in:
Published in: | Building and environment 2020-02, Vol.169, p.106566, Article 106566 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drinking water chemical quality can deteriorate after water enters building plumbing. This study aimed to better understand seasonal and spatial water quality differences in a highly monitored net-zero energy residential building. Water flow rate and temperature were monitored for one year at the service line and at every fixture throughout the crosslinked polyethylene plumbing. Discrete water sampling events (58) were conducted at the service line, 1st floor kitchen sink, 2nd floor bathroom sink, the water heater, and 2nd floor shower. More than 2.4 billion online monitoring records were collected for fixture flow and temperature. In-building water stagnation time varied seasonally and across fixtures. Significant spatial and temporal water chemical quality variations were found. Average seasonal variability was found for service line temperature (15–23 °C) for the total chlorine residual (0.4–0.9 mg/L-Cl2), NH3 ( |
---|---|
ISSN: | 0360-1323 1873-684X |
DOI: | 10.1016/j.buildenv.2019.106566 |