Loading…

Synthesis and characterization of dimeric μ‐oxidovanadium complexes as the functional model of vanadium bromoperoxidase

Two vanadium (IV) complexes [VIVO(Haeae‐sal)(MeOH)]+ (1) and [VIVO(Haeae‐hyap)(MeOH)]+ (2) were prepared by reacting [VO(acac)2] with ligands [H2aeae‐sal] (I) and [H2aeae‐hyap] (II) respectively. Condensation of 2‐(2‐aminoethylamino)ethanol with salicylaldehyde and 2‐hydroxyacetophenone produces the...

Full description

Saved in:
Bibliographic Details
Published in:Applied organometallic chemistry 2020-04, Vol.34 (4), p.n/a
Main Authors: Maurya, Abhishek, Mahato, Arun Kumar, Chaudhary, Nikita, Kesharwani, Neha, Kachhap, Payal, Mishra, Vivek Kumar, Haldar, Chanchal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two vanadium (IV) complexes [VIVO(Haeae‐sal)(MeOH)]+ (1) and [VIVO(Haeae‐hyap)(MeOH)]+ (2) were prepared by reacting [VO(acac)2] with ligands [H2aeae‐sal] (I) and [H2aeae‐hyap] (II) respectively. Condensation of 2‐(2‐aminoethylamino)ethanol with salicylaldehyde and 2‐hydroxyacetophenone produces the ligands (I) and (II) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid‐state. Single‐crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid‐state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion (TOF value of 2.739 × 102 h−1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h−1) for the oxidative bromination of salicylaldehyde where 5‐bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h−1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h−1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde. Well‐characterized vanadium (V) oxido complexes were immobilized into the chloromethylated polystyrene beads and used as a potential catalyst for the oxidative bromination of salicylaldehyde. Easy separation, higher thermal stability, uncomplicated synthesis, and high efficiency make the supported catalysts an excellent choice for the o
ISSN:0268-2605
1099-0739
DOI:10.1002/aoc.5508