Loading…
A Signature Based Border Basis Algorithm
The Border Basis Algorithm (BBA) still suffers from the lack of analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this paper we develop a signature based technique which provides a first remedial step: signature bounds allow us to recognize multiple reductions of the same an...
Saved in:
Published in: | Mathematics in computer science 2020-03, Vol.14 (1), p.177-189 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-2814473075288f4c490ab88b8d5c008338d94b88b809f77c293a6cb1e8e546b43 |
container_end_page | 189 |
container_issue | 1 |
container_start_page | 177 |
container_title | Mathematics in computer science |
container_volume | 14 |
creator | Horáček, Jan Kreuzer, Martin Messeng Ekossono, Ange-Salomé |
description | The Border Basis Algorithm (BBA) still suffers from the lack of analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this paper we develop a signature based technique which provides a first remedial step: signature bounds allow us to recognize multiple reductions of the same ancestor polynomial. The new signature based algorithm is then combined with the Boolean BBA for ideals of Boolean polynomials. Experiments show that it is at least 5 times faster than the standard Boolean BBA. |
doi_str_mv | 10.1007/s11786-020-00459-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376270853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376270853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2814473075288f4c490ab88b8d5c008338d94b88b809f77c293a6cb1e8e546b43</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRWFgMx5fYJ2NaUUCqxADMVuI4IVWbFDsd6NPjNgg2pnPRf5E-Qq4Z3DEAfR8Y06gocKAAMs3o_oRMmFKMIsfs9HfXcE4uQlgBKM4km5DbPHltm64Ydt4lsyK4Kpn1vnL-cLQhyddN79vhY3NJzupiHdzVz5yS98XD2_yJLl8en-f5ktoYPlCOTEotQKccsZZWZlCUiCVWqQVAIbDK5PEBWa215ZkolC2ZQ5dKVUoxJTdj7tb3nzsXBrPqd76LlYYLrWIJpiKq-Kiyvg_Bu9psfbsp_JdhYA5EzEjERCLmSMTso0mMphDFXeP8X_Q_rm_a-mEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376270853</pqid></control><display><type>article</type><title>A Signature Based Border Basis Algorithm</title><source>Springer Link</source><creator>Horáček, Jan ; Kreuzer, Martin ; Messeng Ekossono, Ange-Salomé</creator><creatorcontrib>Horáček, Jan ; Kreuzer, Martin ; Messeng Ekossono, Ange-Salomé</creatorcontrib><description>The Border Basis Algorithm (BBA) still suffers from the lack of analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this paper we develop a signature based technique which provides a first remedial step: signature bounds allow us to recognize multiple reductions of the same ancestor polynomial. The new signature based algorithm is then combined with the Boolean BBA for ideals of Boolean polynomials. Experiments show that it is at least 5 times faster than the standard Boolean BBA.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-020-00459-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Boolean ; Boolean algebra ; Computer Science ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Mathematics in computer science, 2020-03, Vol.14 (1), p.177-189</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>2020© Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2814473075288f4c490ab88b8d5c008338d94b88b809f77c293a6cb1e8e546b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Horáček, Jan</creatorcontrib><creatorcontrib>Kreuzer, Martin</creatorcontrib><creatorcontrib>Messeng Ekossono, Ange-Salomé</creatorcontrib><title>A Signature Based Border Basis Algorithm</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>The Border Basis Algorithm (BBA) still suffers from the lack of analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this paper we develop a signature based technique which provides a first remedial step: signature bounds allow us to recognize multiple reductions of the same ancestor polynomial. The new signature based algorithm is then combined with the Boolean BBA for ideals of Boolean polynomials. Experiments show that it is at least 5 times faster than the standard Boolean BBA.</description><subject>Algorithms</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRWFgMx5fYJ2NaUUCqxADMVuI4IVWbFDsd6NPjNgg2pnPRf5E-Qq4Z3DEAfR8Y06gocKAAMs3o_oRMmFKMIsfs9HfXcE4uQlgBKM4km5DbPHltm64Ydt4lsyK4Kpn1vnL-cLQhyddN79vhY3NJzupiHdzVz5yS98XD2_yJLl8en-f5ktoYPlCOTEotQKccsZZWZlCUiCVWqQVAIbDK5PEBWa215ZkolC2ZQ5dKVUoxJTdj7tb3nzsXBrPqd76LlYYLrWIJpiKq-Kiyvg_Bu9psfbsp_JdhYA5EzEjERCLmSMTso0mMphDFXeP8X_Q_rm_a-mEH</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Horáček, Jan</creator><creator>Kreuzer, Martin</creator><creator>Messeng Ekossono, Ange-Salomé</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>A Signature Based Border Basis Algorithm</title><author>Horáček, Jan ; Kreuzer, Martin ; Messeng Ekossono, Ange-Salomé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2814473075288f4c490ab88b8d5c008338d94b88b809f77c293a6cb1e8e546b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horáček, Jan</creatorcontrib><creatorcontrib>Kreuzer, Martin</creatorcontrib><creatorcontrib>Messeng Ekossono, Ange-Salomé</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horáček, Jan</au><au>Kreuzer, Martin</au><au>Messeng Ekossono, Ange-Salomé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Signature Based Border Basis Algorithm</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>The Border Basis Algorithm (BBA) still suffers from the lack of analogues of Buchberger’s criteria for avoiding unnecessary reductions. In this paper we develop a signature based technique which provides a first remedial step: signature bounds allow us to recognize multiple reductions of the same ancestor polynomial. The new signature based algorithm is then combined with the Boolean BBA for ideals of Boolean polynomials. Experiments show that it is at least 5 times faster than the standard Boolean BBA.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-020-00459-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2020-03, Vol.14 (1), p.177-189 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2376270853 |
source | Springer Link |
subjects | Algorithms Boolean Boolean algebra Computer Science Mathematics Mathematics and Statistics Polynomials |
title | A Signature Based Border Basis Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Signature%20Based%20Border%20Basis%20Algorithm&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Hor%C3%A1%C4%8Dek,%20Jan&rft.date=2020-03-01&rft.volume=14&rft.issue=1&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-020-00459-z&rft_dat=%3Cproquest_cross%3E2376270853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2814473075288f4c490ab88b8d5c008338d94b88b809f77c293a6cb1e8e546b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376270853&rft_id=info:pmid/&rfr_iscdi=true |