Loading…

A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model

Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black-Scholes...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-12
Main Authors: Krzyżanowski, Grzegorz, Magdziarz, Marcin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Krzyżanowski, Grzegorz
Magdziarz, Marcin
description Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black-Scholes (B-S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff-Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.
doi_str_mv 10.48550/arxiv.2003.05358
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376454300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376454300</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-712b58d5ab427d48dfbf1bd910c7b04c224c746d4d34e68fbcc17e9e3999aeb23</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0kJKrSD2BniXWKc23HybJUPCpVYkH3lR_XxCWJi50UPp9WsJrF0RxphpC7ki1FLSV70OknnJbAGF8yyWV9RWbAeVnUAuCGLHI-MMagUiAln5HTitrYH6dRjyEOuqPfGD7aER31YQgjUhe8x4SDRdrj2MYziImuekzB6oHqwVGjUwqYaDxeHJmGgebJXIpTDiekj522n8W7bWOHmfbRYXdLrr3uMi7-c052z0-79WuxfXvZrFfbQktghSrByNpJbQQoJ2rnjS-Na0pmlWHCAgirROWE4wKr2htrS4UN8qZpNBrgc3L_pz2m-DVhHveHOKXzzLwHriohBT__9AuR_1-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376454300</pqid></control><display><type>article</type><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model</title><source>Publicly Available Content Database</source><creator>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</creator><creatorcontrib>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</creatorcontrib><description>Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black-Scholes (B-S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff-Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2003.05358</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Finite difference method ; Schwartz method ; Stability analysis ; Stochastic models</subject><ispartof>arXiv.org, 2020-12</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376454300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Krzyżanowski, Grzegorz</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model</title><title>arXiv.org</title><description>Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black-Scholes (B-S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff-Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</description><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Schwartz method</subject><subject>Stability analysis</subject><subject>Stochastic models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkMtOwzAURC0kJKrSD2BniXWKc23HybJUPCpVYkH3lR_XxCWJi50UPp9WsJrF0RxphpC7ki1FLSV70OknnJbAGF8yyWV9RWbAeVnUAuCGLHI-MMagUiAln5HTitrYH6dRjyEOuqPfGD7aER31YQgjUhe8x4SDRdrj2MYziImuekzB6oHqwVGjUwqYaDxeHJmGgebJXIpTDiekj522n8W7bWOHmfbRYXdLrr3uMi7-c052z0-79WuxfXvZrFfbQktghSrByNpJbQQoJ2rnjS-Na0pmlWHCAgirROWE4wKr2htrS4UN8qZpNBrgc3L_pz2m-DVhHveHOKXzzLwHriohBT__9AuR_1-Q</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Krzyżanowski, Grzegorz</creator><creator>Magdziarz, Marcin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201229</creationdate><title>A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model</title><author>Krzyżanowski, Grzegorz ; Magdziarz, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-712b58d5ab427d48dfbf1bd910c7b04c224c746d4d34e68fbcc17e9e3999aeb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Schwartz method</topic><topic>Stability analysis</topic><topic>Stochastic models</topic><toplevel>online_resources</toplevel><creatorcontrib>Krzyżanowski, Grzegorz</creatorcontrib><creatorcontrib>Magdziarz, Marcin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzyżanowski, Grzegorz</au><au>Magdziarz, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model</atitle><jtitle>arXiv.org</jtitle><date>2020-12-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Subdiffusion is a well established phenomenon in physics. In this paper we apply the subdiffusive dynamics to analyze financial markets. We focus on the financial aspect of time fractional diffusion model with moving boundary i.e. American and barrier option pricing in the subdiffusive Black-Scholes (B-S) model. Two computational methods for valuing American options in the considered model are proposed - the weighted finite difference (FD) and the Longstaff-Schwartz method. In the article it is also shown how to valuate numerically wide range of barrier options using the FD approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2003.05358</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2376454300
source Publicly Available Content Database
subjects Differential equations
Finite difference method
Schwartz method
Stability analysis
Stochastic models
title A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20weighted%20finite%20difference%20method%20for%20American%20and%20barrier%20options%20in%20subdiffusive%20Black-Scholes%20model&rft.jtitle=arXiv.org&rft.au=Krzy%C5%BCanowski,%20Grzegorz&rft.date=2020-12-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2003.05358&rft_dat=%3Cproquest%3E2376454300%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-712b58d5ab427d48dfbf1bd910c7b04c224c746d4d34e68fbcc17e9e3999aeb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376454300&rft_id=info:pmid/&rfr_iscdi=true