Loading…
New stochastic highway capacity estimation method and why product limit method is unsuitable
Kaplan-Meier estimate, commonly known as product limit method (PLM), and maximum likelihood estimate (MLE) methods in general are often cited as means of stochastic highway capacity estimation. This article discusses their unsuitability for such application as properties of traffic flow do not meet...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mikolasek, Igor |
description | Kaplan-Meier estimate, commonly known as product limit method (PLM), and maximum likelihood estimate (MLE) methods in general are often cited as means of stochastic highway capacity estimation. This article discusses their unsuitability for such application as properties of traffic flow do not meet the assumptions for use of the methods. They assume the observed subject has a history which it went through and did not fail. However, due to its nature, each traffic flow measurement behaves as a separate subject which did not go through all the lower levels of intensity (did not "age"). An alternative method is proposed. It fits the resulting cumulative frequency of breakdowns with respect to the traffic flow intensity leading to the breakdown instead of directly estimating the underlying probability distribution of capacity. Analyses of accuracy and sensitivity to data quantity and censoring rate of the new method are provided along with comparison to the PLM. The results prove unsuitability of the PLM and MLE methods in general. The new method is then used in a case study which compares capacity of a work-zone with and without a traffic flow speed harmonisation system installed. The results confirm positive effect of harmonisation on capacity. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376456150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376456150</sourcerecordid><originalsourceid>FETCH-proquest_journals_23764561503</originalsourceid><addsrcrecordid>eNqNjLEKwjAURYMgWLT_8MC5kCZN6y6Kk5OjUGIaTUqb1OaF0r-3g-5OF-45965IwjjPs0PB2IakIbSUUlZWTAiekPtVTxDQKyMDWgXGvswkZ1BykMriDHqpe4nWO-g1Gt-AdA1MZoZh9E1UCJ3tLf6gDRBdiBblo9M7sn7KLuj0m1uyP59ux0u2TN9xea5bH0e3oJrxqixEmQvK_7M-QKxETw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376456150</pqid></control><display><type>article</type><title>New stochastic highway capacity estimation method and why product limit method is unsuitable</title><source>Publicly Available Content Database</source><creator>Mikolasek, Igor</creator><creatorcontrib>Mikolasek, Igor</creatorcontrib><description>Kaplan-Meier estimate, commonly known as product limit method (PLM), and maximum likelihood estimate (MLE) methods in general are often cited as means of stochastic highway capacity estimation. This article discusses their unsuitability for such application as properties of traffic flow do not meet the assumptions for use of the methods. They assume the observed subject has a history which it went through and did not fail. However, due to its nature, each traffic flow measurement behaves as a separate subject which did not go through all the lower levels of intensity (did not "age"). An alternative method is proposed. It fits the resulting cumulative frequency of breakdowns with respect to the traffic flow intensity leading to the breakdown instead of directly estimating the underlying probability distribution of capacity. Analyses of accuracy and sensitivity to data quantity and censoring rate of the new method are provided along with comparison to the PLM. The results prove unsuitability of the PLM and MLE methods in general. The new method is then used in a case study which compares capacity of a work-zone with and without a traffic flow speed harmonisation system installed. The results confirm positive effect of harmonisation on capacity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Breakdown ; Flow measurement ; Maximum likelihood estimates ; Methods ; Traffic capacity ; Traffic flow ; Traffic speed</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376456150?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Mikolasek, Igor</creatorcontrib><title>New stochastic highway capacity estimation method and why product limit method is unsuitable</title><title>arXiv.org</title><description>Kaplan-Meier estimate, commonly known as product limit method (PLM), and maximum likelihood estimate (MLE) methods in general are often cited as means of stochastic highway capacity estimation. This article discusses their unsuitability for such application as properties of traffic flow do not meet the assumptions for use of the methods. They assume the observed subject has a history which it went through and did not fail. However, due to its nature, each traffic flow measurement behaves as a separate subject which did not go through all the lower levels of intensity (did not "age"). An alternative method is proposed. It fits the resulting cumulative frequency of breakdowns with respect to the traffic flow intensity leading to the breakdown instead of directly estimating the underlying probability distribution of capacity. Analyses of accuracy and sensitivity to data quantity and censoring rate of the new method are provided along with comparison to the PLM. The results prove unsuitability of the PLM and MLE methods in general. The new method is then used in a case study which compares capacity of a work-zone with and without a traffic flow speed harmonisation system installed. The results confirm positive effect of harmonisation on capacity.</description><subject>Breakdown</subject><subject>Flow measurement</subject><subject>Maximum likelihood estimates</subject><subject>Methods</subject><subject>Traffic capacity</subject><subject>Traffic flow</subject><subject>Traffic speed</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLEKwjAURYMgWLT_8MC5kCZN6y6Kk5OjUGIaTUqb1OaF0r-3g-5OF-45965IwjjPs0PB2IakIbSUUlZWTAiekPtVTxDQKyMDWgXGvswkZ1BykMriDHqpe4nWO-g1Gt-AdA1MZoZh9E1UCJ3tLf6gDRBdiBblo9M7sn7KLuj0m1uyP59ux0u2TN9xea5bH0e3oJrxqixEmQvK_7M-QKxETw</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Mikolasek, Igor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200311</creationdate><title>New stochastic highway capacity estimation method and why product limit method is unsuitable</title><author>Mikolasek, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23764561503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breakdown</topic><topic>Flow measurement</topic><topic>Maximum likelihood estimates</topic><topic>Methods</topic><topic>Traffic capacity</topic><topic>Traffic flow</topic><topic>Traffic speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Mikolasek, Igor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikolasek, Igor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>New stochastic highway capacity estimation method and why product limit method is unsuitable</atitle><jtitle>arXiv.org</jtitle><date>2020-03-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Kaplan-Meier estimate, commonly known as product limit method (PLM), and maximum likelihood estimate (MLE) methods in general are often cited as means of stochastic highway capacity estimation. This article discusses their unsuitability for such application as properties of traffic flow do not meet the assumptions for use of the methods. They assume the observed subject has a history which it went through and did not fail. However, due to its nature, each traffic flow measurement behaves as a separate subject which did not go through all the lower levels of intensity (did not "age"). An alternative method is proposed. It fits the resulting cumulative frequency of breakdowns with respect to the traffic flow intensity leading to the breakdown instead of directly estimating the underlying probability distribution of capacity. Analyses of accuracy and sensitivity to data quantity and censoring rate of the new method are provided along with comparison to the PLM. The results prove unsuitability of the PLM and MLE methods in general. The new method is then used in a case study which compares capacity of a work-zone with and without a traffic flow speed harmonisation system installed. The results confirm positive effect of harmonisation on capacity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2376456150 |
source | Publicly Available Content Database |
subjects | Breakdown Flow measurement Maximum likelihood estimates Methods Traffic capacity Traffic flow Traffic speed |
title | New stochastic highway capacity estimation method and why product limit method is unsuitable |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=New%20stochastic%20highway%20capacity%20estimation%20method%20and%20why%20product%20limit%20method%20is%20unsuitable&rft.jtitle=arXiv.org&rft.au=Mikolasek,%20Igor&rft.date=2020-03-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2376456150%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23764561503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376456150&rft_id=info:pmid/&rfr_iscdi=true |