Loading…
Nonparametric imputation method for nonresponse in surveys
Many imputation methods are based on a statistical model that assumes the variable of interest is a noisy observation of a function of the auxiliary variables or covariates. Misspecification of this function may lead to severe errors in estimation and to misleading conclusions. Imputation techniques...
Saved in:
Published in: | Statistical methods & applications 2020-03, Vol.29 (1), p.25-48 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 25 |
container_title | Statistical methods & applications |
container_volume | 29 |
creator | Hasler, Caren Craiu, Radu V. |
description | Many imputation methods are based on a statistical model that assumes the variable of interest is a noisy observation of a function of the auxiliary variables or covariates. Misspecification of this function may lead to severe errors in estimation and to misleading conclusions. Imputation techniques can therefore benefit from flexible formulations that can capture a wide range of patterns. We consider the use of smoothing splines within an additive model framework to estimate the functional dependence between the variable of interest and the auxiliary variables. The estimator obtained allows us to build an imputation model in the case of multiple auxiliary variables. The performance of our method is assessed via numerical experiments involving simulated and real data. |
doi_str_mv | 10.1007/s10260-019-00458-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376771327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202952465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk32bjTYpWoehFwVtIdxPdYpM12bX025t2BW-FgRlm3nsDP4QuCVwTAHmTCNASMBCFAbio8OYITUhJGFYVeT_ezxWmgsApOktpBcAY42yCbp-D70w0a9vHti7adTf0pm-DL_LmMzSFC7HwwUebuuCTLVpfpCH-2G06RyfOfCV78den6O3h_nX2iBcv86fZ3QLXrIIec2UEU5JWHEA0QEVT5pKWMmmUoruzFA1tBHOlWCpZC-6WRIBraisUl2yKrsbcLobvwaZer8IQfX6pc0YpJWH0sIoCVYLyUmQVHVV1DClF63QX27WJW01A70jqkaTOJPWepN5kExtNKYv9h43_0Qdcv00idTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202952465</pqid></control><display><type>article</type><title>Nonparametric imputation method for nonresponse in surveys</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Econlit with Full Text</source><source>Springer Nature</source><creator>Hasler, Caren ; Craiu, Radu V.</creator><creatorcontrib>Hasler, Caren ; Craiu, Radu V.</creatorcontrib><description>Many imputation methods are based on a statistical model that assumes the variable of interest is a noisy observation of a function of the auxiliary variables or covariates. Misspecification of this function may lead to severe errors in estimation and to misleading conclusions. Imputation techniques can therefore benefit from flexible formulations that can capture a wide range of patterns. We consider the use of smoothing splines within an additive model framework to estimate the functional dependence between the variable of interest and the auxiliary variables. The estimator obtained allows us to build an imputation model in the case of multiple auxiliary variables. The performance of our method is assessed via numerical experiments involving simulated and real data.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-019-00458-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Dependence ; Economics ; Finance ; Formulations ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Nonparametric statistics ; Original Paper ; Physics ; Spline functions ; Splines ; Statistical models ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences ; Variables</subject><ispartof>Statistical methods & applications, 2020-03, Vol.29 (1), p.25-48</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Statistical Methods & Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>2019© Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473</citedby><cites>FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473</cites><orcidid>0000-0002-3963-994X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hasler, Caren</creatorcontrib><creatorcontrib>Craiu, Radu V.</creatorcontrib><title>Nonparametric imputation method for nonresponse in surveys</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>Many imputation methods are based on a statistical model that assumes the variable of interest is a noisy observation of a function of the auxiliary variables or covariates. Misspecification of this function may lead to severe errors in estimation and to misleading conclusions. Imputation techniques can therefore benefit from flexible formulations that can capture a wide range of patterns. We consider the use of smoothing splines within an additive model framework to estimate the functional dependence between the variable of interest and the auxiliary variables. The estimator obtained allows us to build an imputation model in the case of multiple auxiliary variables. The performance of our method is assessed via numerical experiments involving simulated and real data.</description><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Economics</subject><subject>Finance</subject><subject>Formulations</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Nonparametric statistics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Spline functions</subject><subject>Splines</subject><subject>Statistical models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><subject>Variables</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk32bjTYpWoehFwVtIdxPdYpM12bX025t2BW-FgRlm3nsDP4QuCVwTAHmTCNASMBCFAbio8OYITUhJGFYVeT_ezxWmgsApOktpBcAY42yCbp-D70w0a9vHti7adTf0pm-DL_LmMzSFC7HwwUebuuCTLVpfpCH-2G06RyfOfCV78den6O3h_nX2iBcv86fZ3QLXrIIec2UEU5JWHEA0QEVT5pKWMmmUoruzFA1tBHOlWCpZC-6WRIBraisUl2yKrsbcLobvwaZer8IQfX6pc0YpJWH0sIoCVYLyUmQVHVV1DClF63QX27WJW01A70jqkaTOJPWepN5kExtNKYv9h43_0Qdcv00idTA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Hasler, Caren</creator><creator>Craiu, Radu V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3963-994X</orcidid></search><sort><creationdate>20200301</creationdate><title>Nonparametric imputation method for nonresponse in surveys</title><author>Hasler, Caren ; Craiu, Radu V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Economics</topic><topic>Finance</topic><topic>Formulations</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Nonparametric statistics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Spline functions</topic><topic>Splines</topic><topic>Statistical models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasler, Caren</creatorcontrib><creatorcontrib>Craiu, Radu V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasler, Caren</au><au>Craiu, Radu V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric imputation method for nonresponse in surveys</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>29</volume><issue>1</issue><spage>25</spage><epage>48</epage><pages>25-48</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>Many imputation methods are based on a statistical model that assumes the variable of interest is a noisy observation of a function of the auxiliary variables or covariates. Misspecification of this function may lead to severe errors in estimation and to misleading conclusions. Imputation techniques can therefore benefit from flexible formulations that can capture a wide range of patterns. We consider the use of smoothing splines within an additive model framework to estimate the functional dependence between the variable of interest and the auxiliary variables. The estimator obtained allows us to build an imputation model in the case of multiple auxiliary variables. The performance of our method is assessed via numerical experiments involving simulated and real data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-019-00458-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3963-994X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2020-03, Vol.29 (1), p.25-48 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2376771327 |
source | EBSCOhost Business Source Ultimate; EBSCOhost Econlit with Full Text; Springer Nature |
subjects | Chemistry and Earth Sciences Computer Science Computer simulation Dependence Economics Finance Formulations Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Nonparametric statistics Original Paper Physics Spline functions Splines Statistical models Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences Variables |
title | Nonparametric imputation method for nonresponse in surveys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20imputation%20method%20for%20nonresponse%20in%20surveys&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Hasler,%20Caren&rft.date=2020-03-01&rft.volume=29&rft.issue=1&rft.spage=25&rft.epage=48&rft.pages=25-48&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-019-00458-w&rft_dat=%3Cproquest_cross%3E2202952465%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-49a5397284005d025d65d67e237a99249a575d2d53f65b97c54fb150fdce59473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202952465&rft_id=info:pmid/&rfr_iscdi=true |