Loading…
The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions
We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature....
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fischer, Julian Hensel, Sebastian Laux, Tim Simon, Thilo |
description | We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376859599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376859599</sourcerecordid><originalsourceid>FETCH-proquest_journals_23768595993</originalsourceid><addsrcrecordid>eNqNzMEOATEQBuBGIiF4h0mcN1mtxboK8QASRxlrllLt6rTE0Zsr8QBOk_zz_19LdKVSo2w2lrIjBsznPM_lZCqLQnXFa3MiMK5CAxx8rEL0BK6GkGKy5I9PMGgPXGFDoC1cowm6OSETXAktVNHf8TuqjXvMYUt4yZLk7BGi1beYEGZIRPJxr40Oz49Pd2di0M5yX7RrNEyD3-2J4Wq5Wayzxrs057A7u-hteu2kmk5mRVmUpfqv9QYOTVJq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376859599</pqid></control><display><type>article</type><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><source>Publicly Available Content (ProQuest)</source><creator>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</creator><creatorcontrib>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</creatorcontrib><description>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calibration ; Curvature ; Flow stability ; Gradient flow ; Multiphase ; Surface energy ; Uniqueness</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376859599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Fischer, Julian</creatorcontrib><creatorcontrib>Hensel, Sebastian</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><creatorcontrib>Simon, Thilo</creatorcontrib><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><title>arXiv.org</title><description>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</description><subject>Calibration</subject><subject>Curvature</subject><subject>Flow stability</subject><subject>Gradient flow</subject><subject>Multiphase</subject><subject>Surface energy</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzMEOATEQBuBGIiF4h0mcN1mtxboK8QASRxlrllLt6rTE0Zsr8QBOk_zz_19LdKVSo2w2lrIjBsznPM_lZCqLQnXFa3MiMK5CAxx8rEL0BK6GkGKy5I9PMGgPXGFDoC1cowm6OSETXAktVNHf8TuqjXvMYUt4yZLk7BGi1beYEGZIRPJxr40Oz49Pd2di0M5yX7RrNEyD3-2J4Wq5Wayzxrs057A7u-hteu2kmk5mRVmUpfqv9QYOTVJq</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Fischer, Julian</creator><creator>Hensel, Sebastian</creator><creator>Laux, Tim</creator><creator>Simon, Thilo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200311</creationdate><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><author>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23768595993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Curvature</topic><topic>Flow stability</topic><topic>Gradient flow</topic><topic>Multiphase</topic><topic>Surface energy</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Julian</creatorcontrib><creatorcontrib>Hensel, Sebastian</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><creatorcontrib>Simon, Thilo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Julian</au><au>Hensel, Sebastian</au><au>Laux, Tim</au><au>Simon, Thilo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</atitle><jtitle>arXiv.org</jtitle><date>2020-03-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2376859599 |
source | Publicly Available Content (ProQuest) |
subjects | Calibration Curvature Flow stability Gradient flow Multiphase Surface energy Uniqueness |
title | The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20local%20structure%20of%20the%20energy%20landscape%20in%20multiphase%20mean%20curvature%20flow:%20Weak-strong%20uniqueness%20and%20stability%20of%20evolutions&rft.jtitle=arXiv.org&rft.au=Fischer,%20Julian&rft.date=2020-03-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2376859599%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23768595993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376859599&rft_id=info:pmid/&rfr_iscdi=true |