Loading…

The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions

We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-03
Main Authors: Fischer, Julian, Hensel, Sebastian, Laux, Tim, Simon, Thilo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fischer, Julian
Hensel, Sebastian
Laux, Tim
Simon, Thilo
description We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376859599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376859599</sourcerecordid><originalsourceid>FETCH-proquest_journals_23768595993</originalsourceid><addsrcrecordid>eNqNzMEOATEQBuBGIiF4h0mcN1mtxboK8QASRxlrllLt6rTE0Zsr8QBOk_zz_19LdKVSo2w2lrIjBsznPM_lZCqLQnXFa3MiMK5CAxx8rEL0BK6GkGKy5I9PMGgPXGFDoC1cowm6OSETXAktVNHf8TuqjXvMYUt4yZLk7BGi1beYEGZIRPJxr40Oz49Pd2di0M5yX7RrNEyD3-2J4Wq5Wayzxrs057A7u-hteu2kmk5mRVmUpfqv9QYOTVJq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376859599</pqid></control><display><type>article</type><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><source>Publicly Available Content (ProQuest)</source><creator>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</creator><creatorcontrib>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</creatorcontrib><description>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Calibration ; Curvature ; Flow stability ; Gradient flow ; Multiphase ; Surface energy ; Uniqueness</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376859599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Fischer, Julian</creatorcontrib><creatorcontrib>Hensel, Sebastian</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><creatorcontrib>Simon, Thilo</creatorcontrib><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><title>arXiv.org</title><description>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</description><subject>Calibration</subject><subject>Curvature</subject><subject>Flow stability</subject><subject>Gradient flow</subject><subject>Multiphase</subject><subject>Surface energy</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzMEOATEQBuBGIiF4h0mcN1mtxboK8QASRxlrllLt6rTE0Zsr8QBOk_zz_19LdKVSo2w2lrIjBsznPM_lZCqLQnXFa3MiMK5CAxx8rEL0BK6GkGKy5I9PMGgPXGFDoC1cowm6OSETXAktVNHf8TuqjXvMYUt4yZLk7BGi1beYEGZIRPJxr40Oz49Pd2di0M5yX7RrNEyD3-2J4Wq5Wayzxrs057A7u-hteu2kmk5mRVmUpfqv9QYOTVJq</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Fischer, Julian</creator><creator>Hensel, Sebastian</creator><creator>Laux, Tim</creator><creator>Simon, Thilo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200311</creationdate><title>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</title><author>Fischer, Julian ; Hensel, Sebastian ; Laux, Tim ; Simon, Thilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23768595993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Curvature</topic><topic>Flow stability</topic><topic>Gradient flow</topic><topic>Multiphase</topic><topic>Surface energy</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Julian</creatorcontrib><creatorcontrib>Hensel, Sebastian</creatorcontrib><creatorcontrib>Laux, Tim</creatorcontrib><creatorcontrib>Simon, Thilo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Julian</au><au>Hensel, Sebastian</au><au>Laux, Tim</au><au>Simon, Thilo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions</atitle><jtitle>arXiv.org</jtitle><date>2020-03-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We prove that in the absence of topological changes, the notion of BV solutions to planar multiphase mean curvature flow does not allow for a mechanism for (unphysical) non-uniqueness. Our approach is based on the local structure of the energy landscape near a classical evolution by mean curvature. Mean curvature flow being the gradient flow of the surface energy functional, we develop a gradient-flow analogue of the notion of calibrations. Just like the existence of a calibration guarantees that one has reached a global minimum in the energy landscape, the existence of a "gradient flow calibration" ensures that the route of steepest descent in the energy landscape is unique and stable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2376859599
source Publicly Available Content (ProQuest)
subjects Calibration
Curvature
Flow stability
Gradient flow
Multiphase
Surface energy
Uniqueness
title The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20local%20structure%20of%20the%20energy%20landscape%20in%20multiphase%20mean%20curvature%20flow:%20Weak-strong%20uniqueness%20and%20stability%20of%20evolutions&rft.jtitle=arXiv.org&rft.au=Fischer,%20Julian&rft.date=2020-03-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2376859599%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23768595993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376859599&rft_id=info:pmid/&rfr_iscdi=true