Loading…
Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries
We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most o...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Baranger, Céline Hérouard, Nicolas Mathiaud, Julien Mieussens, Luc |
description | We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow. |
doi_str_mv | 10.48550/arxiv.2003.05677 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376862220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376862220</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733</originalsourceid><addsrcrecordid>eNo1j8tKAzEYhYMgWGofwN0PrqdmkskkXUq1KhTdFLclk4tNTRNNJl4ewnc2osKBs_n4DgehsxbPO8EYvpDpw73NCcZ0jlnP-RGaEErbRnSEnKBZznuMMek5YYxO0Nd9OZjklPQwxBK0TJ-gYtBudDFkcAFWLrjRwGP0lQQZNFy5XJHRhRJLhhvpTXquYFY7czAZbEww7gxkdyhe_nggWkgyGeuMBuvjewbpY3iCHL3T_8PO5FN0bKXPZvbXU7RZXW-Wt8364eZuebluJCO4kS2W3SDbgQ5G1OhOCsOxJpgq0mnFMCWLerJr-4Wiyg6KcsWpEFRwizmlU3T-q31J8bWYPG73saRQF7eE8l70hFTXNxwwZ-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376862220</pqid></control><display><type>article</type><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><source>Publicly Available Content Database</source><creator>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</creator><creatorcontrib>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</creatorcontrib><description>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2003.05677</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Computer simulation ; Couette flow ; Finite volume method ; Galerkin method ; Rarefied gas dynamics ; Rarefied gases ; Two dimensional flow</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376862220?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Baranger, Céline</creatorcontrib><creatorcontrib>Hérouard, Nicolas</creatorcontrib><creatorcontrib>Mathiaud, Julien</creatorcontrib><creatorcontrib>Mieussens, Luc</creatorcontrib><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><title>arXiv.org</title><description>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Couette flow</subject><subject>Finite volume method</subject><subject>Galerkin method</subject><subject>Rarefied gas dynamics</subject><subject>Rarefied gases</subject><subject>Two dimensional flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1j8tKAzEYhYMgWGofwN0PrqdmkskkXUq1KhTdFLclk4tNTRNNJl4ewnc2osKBs_n4DgehsxbPO8EYvpDpw73NCcZ0jlnP-RGaEErbRnSEnKBZznuMMek5YYxO0Nd9OZjklPQwxBK0TJ-gYtBudDFkcAFWLrjRwGP0lQQZNFy5XJHRhRJLhhvpTXquYFY7czAZbEww7gxkdyhe_nggWkgyGeuMBuvjewbpY3iCHL3T_8PO5FN0bKXPZvbXU7RZXW-Wt8364eZuebluJCO4kS2W3SDbgQ5G1OhOCsOxJpgq0mnFMCWLerJr-4Wiyg6KcsWpEFRwizmlU3T-q31J8bWYPG73saRQF7eE8l70hFTXNxwwZ-I</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Baranger, Céline</creator><creator>Hérouard, Nicolas</creator><creator>Mathiaud, Julien</creator><creator>Mieussens, Luc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200312</creationdate><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><author>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Couette flow</topic><topic>Finite volume method</topic><topic>Galerkin method</topic><topic>Rarefied gas dynamics</topic><topic>Rarefied gases</topic><topic>Two dimensional flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Baranger, Céline</creatorcontrib><creatorcontrib>Hérouard, Nicolas</creatorcontrib><creatorcontrib>Mathiaud, Julien</creatorcontrib><creatorcontrib>Mieussens, Luc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranger, Céline</au><au>Hérouard, Nicolas</au><au>Mathiaud, Julien</au><au>Mieussens, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</atitle><jtitle>arXiv.org</jtitle><date>2020-03-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2003.05677</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2376862220 |
source | Publicly Available Content Database |
subjects | Boundary conditions Computer simulation Couette flow Finite volume method Galerkin method Rarefied gas dynamics Rarefied gases Two dimensional flow |
title | Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20boundary%20conditions%20in%20Finite%20Volume%20and%20Discontinuous%20Galerkin%20schemes%20for%20the%20simulation%20of%20rarefied%20flows%20along%20solid%20boundaries&rft.jtitle=arXiv.org&rft.au=Baranger,%20C%C3%A9line&rft.date=2020-03-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2003.05677&rft_dat=%3Cproquest%3E2376862220%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376862220&rft_id=info:pmid/&rfr_iscdi=true |