Loading…

Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries

We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-03
Main Authors: Baranger, Céline, Hérouard, Nicolas, Mathiaud, Julien, Mieussens, Luc
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Baranger, Céline
Hérouard, Nicolas
Mathiaud, Julien
Mieussens, Luc
description We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.
doi_str_mv 10.48550/arxiv.2003.05677
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376862220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376862220</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733</originalsourceid><addsrcrecordid>eNo1j8tKAzEYhYMgWGofwN0PrqdmkskkXUq1KhTdFLclk4tNTRNNJl4ewnc2osKBs_n4DgehsxbPO8EYvpDpw73NCcZ0jlnP-RGaEErbRnSEnKBZznuMMek5YYxO0Nd9OZjklPQwxBK0TJ-gYtBudDFkcAFWLrjRwGP0lQQZNFy5XJHRhRJLhhvpTXquYFY7czAZbEww7gxkdyhe_nggWkgyGeuMBuvjewbpY3iCHL3T_8PO5FN0bKXPZvbXU7RZXW-Wt8364eZuebluJCO4kS2W3SDbgQ5G1OhOCsOxJpgq0mnFMCWLerJr-4Wiyg6KcsWpEFRwizmlU3T-q31J8bWYPG73saRQF7eE8l70hFTXNxwwZ-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376862220</pqid></control><display><type>article</type><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><source>Publicly Available Content Database</source><creator>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</creator><creatorcontrib>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</creatorcontrib><description>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2003.05677</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Computer simulation ; Couette flow ; Finite volume method ; Galerkin method ; Rarefied gas dynamics ; Rarefied gases ; Two dimensional flow</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2376862220?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Baranger, Céline</creatorcontrib><creatorcontrib>Hérouard, Nicolas</creatorcontrib><creatorcontrib>Mathiaud, Julien</creatorcontrib><creatorcontrib>Mieussens, Luc</creatorcontrib><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><title>arXiv.org</title><description>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Couette flow</subject><subject>Finite volume method</subject><subject>Galerkin method</subject><subject>Rarefied gas dynamics</subject><subject>Rarefied gases</subject><subject>Two dimensional flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1j8tKAzEYhYMgWGofwN0PrqdmkskkXUq1KhTdFLclk4tNTRNNJl4ewnc2osKBs_n4DgehsxbPO8EYvpDpw73NCcZ0jlnP-RGaEErbRnSEnKBZznuMMek5YYxO0Nd9OZjklPQwxBK0TJ-gYtBudDFkcAFWLrjRwGP0lQQZNFy5XJHRhRJLhhvpTXquYFY7czAZbEww7gxkdyhe_nggWkgyGeuMBuvjewbpY3iCHL3T_8PO5FN0bKXPZvbXU7RZXW-Wt8364eZuebluJCO4kS2W3SDbgQ5G1OhOCsOxJpgq0mnFMCWLerJr-4Wiyg6KcsWpEFRwizmlU3T-q31J8bWYPG73saRQF7eE8l70hFTXNxwwZ-I</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Baranger, Céline</creator><creator>Hérouard, Nicolas</creator><creator>Mathiaud, Julien</creator><creator>Mieussens, Luc</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200312</creationdate><title>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</title><author>Baranger, Céline ; Hérouard, Nicolas ; Mathiaud, Julien ; Mieussens, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Couette flow</topic><topic>Finite volume method</topic><topic>Galerkin method</topic><topic>Rarefied gas dynamics</topic><topic>Rarefied gases</topic><topic>Two dimensional flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Baranger, Céline</creatorcontrib><creatorcontrib>Hérouard, Nicolas</creatorcontrib><creatorcontrib>Mathiaud, Julien</creatorcontrib><creatorcontrib>Mieussens, Luc</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranger, Céline</au><au>Hérouard, Nicolas</au><au>Mathiaud, Julien</au><au>Mieussens, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries</atitle><jtitle>arXiv.org</jtitle><date>2020-03-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2003.05677</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2376862220
source Publicly Available Content Database
subjects Boundary conditions
Computer simulation
Couette flow
Finite volume method
Galerkin method
Rarefied gas dynamics
Rarefied gases
Two dimensional flow
title Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20boundary%20conditions%20in%20Finite%20Volume%20and%20Discontinuous%20Galerkin%20schemes%20for%20the%20simulation%20of%20rarefied%20flows%20along%20solid%20boundaries&rft.jtitle=arXiv.org&rft.au=Baranger,%20C%C3%A9line&rft.date=2020-03-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2003.05677&rft_dat=%3Cproquest%3E2376862220%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-a10a4ba1b3be8be8d4a8e70d203c24dc503290004169c3cfbc37c7388387f0733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376862220&rft_id=info:pmid/&rfr_iscdi=true