Loading…
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
Neural networks of ads systems usually take input from multiple resources, e.g., query-ad relevance, ad features and user portraits. These inputs are encoded into one-hot or multi-hot binary features, with typically only a tiny fraction of nonzero feature values per example. Deep learning models in...
Saved in:
Published in: | arXiv.org 2020-03 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural networks of ads systems usually take input from multiple resources, e.g., query-ad relevance, ad features and user portraits. These inputs are encoded into one-hot or multi-hot binary features, with typically only a tiny fraction of nonzero feature values per example. Deep learning models in online advertising industries can have terabyte-scale parameters that do not fit in the GPU memory nor the CPU main memory on a computing node. For example, a sponsored online advertising system can contain more than \(10^{11}\) sparse features, making the neural network a massive model with around 10 TB parameters. In this paper, we introduce a distributed GPU hierarchical parameter server for massive scale deep learning ads systems. We propose a hierarchical workflow that utilizes GPU High-Bandwidth Memory, CPU main memory and SSD as 3-layer hierarchical storage. All the neural network training computations are contained in GPUs. Extensive experiments on real-world data confirm the effectiveness and the scalability of the proposed system. A 4-node hierarchical GPU parameter server can train a model more than 2X faster than a 150-node in-memory distributed parameter server in an MPI cluster. In addition, the price-performance ratio of our proposed system is 4-9 times better than an MPI-cluster solution. |
---|---|
ISSN: | 2331-8422 |