Loading…

R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum

SNAREs (soluble N -ethylmaleimide-sensitive factor attachment protein receptors) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic cells, and play a vital role in growth, development and pathogenicity of phytopathogens. Fusarium head blight (FHB) caused by F. graminearum...

Full description

Saved in:
Bibliographic Details
Published in:Current genetics 2020-04, Vol.66 (2), p.421-435
Main Authors: Adnan, Muhammad, Fang, Wenqin, Sun, Peng, Zheng, Yangling, Abubakar, Yakubu Saddeeq, Zhang, Jing, Lou, Yi, Zheng, Wenhui, Lu, Guo-dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SNAREs (soluble N -ethylmaleimide-sensitive factor attachment protein receptors) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotic cells, and play a vital role in growth, development and pathogenicity of phytopathogens. Fusarium head blight (FHB) caused by F. graminearum is one of the most devastating diseases of wheat and barley worldwide. Sec22 is a member of the SNARE family of proteins and its homologues have been shown to have diverse biological roles in different organisms. However, the functions of this protein in the development and pathogenesis of F. graminearum are currently unknown. In this study, we employed integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of FgSec22 in F. graminearum . Our data reveal that this SNARE protein is localized to endoplasmic reticulum (ER) and is indispensable for normal conidiation, conidial morphology and pathogenesis of this phytopathogenic fungus. Our biochemical assay of deoxynivalenol (DON) reveals the active involvement of this protein in the production of this mycotoxin in F. graminearum . This has further been confirmed by qRT-PCR analyses of trichothecene ( TRI ) genes’ expression where the ΔFgsec22 deletion mutant demonstrated a significant down-regulation of these genes in comparison to the wild-type PH-1. Unlike the wild-type and the complemented strain, the mutant strain presents a remarkable defect in colony formation which reflects the critical role it plays in vegetative growth. Collectively, our data support that the SNARE protein FgSec22 is required for vegetative growth, pathogenesis and DON biosynthesis in F. graminearum .
ISSN:0172-8083
1432-0983
DOI:10.1007/s00294-019-01037-y