Loading…

A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators

In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, wi...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2020-03, Vol.374 (3), p.1497-1529
Main Authors: Casati, Matteo, Wang, Jing Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63
cites cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63
container_end_page 1529
container_issue 3
container_start_page 1497
container_title Communications in mathematical physics
container_volume 374
creator Casati, Matteo
Wang, Jing Ping
description In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator K 0 = S - S - 1 , which is the normal form for ( - 1 , 1 ) order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely H p ( K 0 ) = 0 ∀ p > 1 , and explicitly compute H 0 ( K 0 ) and H 1 ( K 0 ) . We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.
doi_str_mv 10.1007/s00220-019-03497-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376957369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376957369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmA3XP7WTsWqhRarEQJktJ7mGVGlc7FQCJt6BN-RJCASJjekO53znSh8h5xwuOYC5SgBCAAOeM5AqN0wckBFXUjDIuT4kIwAOTGquj8lJShsAyIXWI7KY0rmLRdi_fL5_LLB7azDS9ROGiFvqQ6T3pWtcpPPae4zYlkiXbls3XWhr19K7HUbXhZhOyZF3TcKz3zsmDzfX69mSre4Wt7PpipVSy46hcxUWnivnFWaZKoWRXk00ZqDAQCU5Om36HEyW-wK8k4he6TIDXVSVlmNyMezuYnjeY-rsJuxj27-0QhqdT4zUed8SQ6uMIaWI3u5ivXXx1XKw38LsIMz2wuyPsJ4eEzlAqS-3jxj_pv-hvgCWnm7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376957369</pqid></control><display><type>article</type><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Casati, Matteo ; Wang, Jing Ping</creator><creatorcontrib>Casati, Matteo ; Wang, Jing Ping</creatorcontrib><description>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator K 0 = S - S - 1 , which is the normal form for ( - 1 , 1 ) order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely H p ( K 0 ) = 0 ∀ p &gt; 1 , and explicitly compute H 0 ( K 0 ) and H 1 ( K 0 ) . We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03497-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Canonical forms ; Classical and Quantum Gravitation ; Complex Systems ; Deformation ; Differential equations ; Functionals ; Homology ; Lie groups ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-03, Vol.374 (3), p.1497-1529</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</citedby><cites>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</cites><orcidid>0000-0002-2207-4807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator K 0 = S - S - 1 , which is the normal form for ( - 1 , 1 ) order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely H p ( K 0 ) = 0 ∀ p &gt; 1 , and explicitly compute H 0 ( K 0 ) and H 1 ( K 0 ) . We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</description><subject>Algebra</subject><subject>Canonical forms</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Functionals</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmA3XP7WTsWqhRarEQJktJ7mGVGlc7FQCJt6BN-RJCASJjekO53znSh8h5xwuOYC5SgBCAAOeM5AqN0wckBFXUjDIuT4kIwAOTGquj8lJShsAyIXWI7KY0rmLRdi_fL5_LLB7azDS9ROGiFvqQ6T3pWtcpPPae4zYlkiXbls3XWhr19K7HUbXhZhOyZF3TcKz3zsmDzfX69mSre4Wt7PpipVSy46hcxUWnivnFWaZKoWRXk00ZqDAQCU5Om36HEyW-wK8k4he6TIDXVSVlmNyMezuYnjeY-rsJuxj27-0QhqdT4zUed8SQ6uMIaWI3u5ivXXx1XKw38LsIMz2wuyPsJ4eEzlAqS-3jxj_pv-hvgCWnm7s</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Casati, Matteo</creator><creator>Wang, Jing Ping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2207-4807</orcidid></search><sort><creationdate>20200301</creationdate><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><author>Casati, Matteo ; Wang, Jing Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Canonical forms</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Functionals</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casati, Matteo</au><au>Wang, Jing Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>374</volume><issue>3</issue><spage>1497</spage><epage>1529</epage><pages>1497-1529</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator K 0 = S - S - 1 , which is the normal form for ( - 1 , 1 ) order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely H p ( K 0 ) = 0 ∀ p &gt; 1 , and explicitly compute H 0 ( K 0 ) and H 1 ( K 0 ) . We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03497-2</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-2207-4807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-03, Vol.374 (3), p.1497-1529
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2376957369
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algebra
Canonical forms
Classical and Quantum Gravitation
Complex Systems
Deformation
Differential equations
Functionals
Homology
Lie groups
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Polynomials
Quantum Physics
Relativity Theory
Theoretical
title A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Darboux%E2%80%93Getzler%20Theorem%20for%20Scalar%20Difference%20Hamiltonian%20Operators&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Casati,%20Matteo&rft.date=2020-03-01&rft.volume=374&rft.issue=3&rft.spage=1497&rft.epage=1529&rft.pages=1497-1529&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03497-2&rft_dat=%3Cproquest_cross%3E2376957369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376957369&rft_id=info:pmid/&rfr_iscdi=true