Loading…
A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators
In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, wi...
Saved in:
Published in: | Communications in mathematical physics 2020-03, Vol.374 (3), p.1497-1529 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63 |
container_end_page | 1529 |
container_issue | 3 |
container_start_page | 1497 |
container_title | Communications in mathematical physics |
container_volume | 374 |
creator | Casati, Matteo Wang, Jing Ping |
description | In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator
K
0
=
S
-
S
-
1
, which is the normal form for
(
-
1
,
1
)
order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely
H
p
(
K
0
)
=
0
∀
p
>
1
, and explicitly compute
H
0
(
K
0
)
and
H
1
(
K
0
)
. We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto. |
doi_str_mv | 10.1007/s00220-019-03497-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376957369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376957369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmA3XP7WTsWqhRarEQJktJ7mGVGlc7FQCJt6BN-RJCASJjekO53znSh8h5xwuOYC5SgBCAAOeM5AqN0wckBFXUjDIuT4kIwAOTGquj8lJShsAyIXWI7KY0rmLRdi_fL5_LLB7azDS9ROGiFvqQ6T3pWtcpPPae4zYlkiXbls3XWhr19K7HUbXhZhOyZF3TcKz3zsmDzfX69mSre4Wt7PpipVSy46hcxUWnivnFWaZKoWRXk00ZqDAQCU5Om36HEyW-wK8k4he6TIDXVSVlmNyMezuYnjeY-rsJuxj27-0QhqdT4zUed8SQ6uMIaWI3u5ivXXx1XKw38LsIMz2wuyPsJ4eEzlAqS-3jxj_pv-hvgCWnm7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376957369</pqid></control><display><type>article</type><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Casati, Matteo ; Wang, Jing Ping</creator><creatorcontrib>Casati, Matteo ; Wang, Jing Ping</creatorcontrib><description>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator
K
0
=
S
-
S
-
1
, which is the normal form for
(
-
1
,
1
)
order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely
H
p
(
K
0
)
=
0
∀
p
>
1
, and explicitly compute
H
0
(
K
0
)
and
H
1
(
K
0
)
. We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03497-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Canonical forms ; Classical and Quantum Gravitation ; Complex Systems ; Deformation ; Differential equations ; Functionals ; Homology ; Lie groups ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-03, Vol.374 (3), p.1497-1529</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</citedby><cites>FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</cites><orcidid>0000-0002-2207-4807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator
K
0
=
S
-
S
-
1
, which is the normal form for
(
-
1
,
1
)
order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely
H
p
(
K
0
)
=
0
∀
p
>
1
, and explicitly compute
H
0
(
K
0
)
and
H
1
(
K
0
)
. We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</description><subject>Algebra</subject><subject>Canonical forms</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Functionals</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmA3XP7WTsWqhRarEQJktJ7mGVGlc7FQCJt6BN-RJCASJjekO53znSh8h5xwuOYC5SgBCAAOeM5AqN0wckBFXUjDIuT4kIwAOTGquj8lJShsAyIXWI7KY0rmLRdi_fL5_LLB7azDS9ROGiFvqQ6T3pWtcpPPae4zYlkiXbls3XWhr19K7HUbXhZhOyZF3TcKz3zsmDzfX69mSre4Wt7PpipVSy46hcxUWnivnFWaZKoWRXk00ZqDAQCU5Om36HEyW-wK8k4he6TIDXVSVlmNyMezuYnjeY-rsJuxj27-0QhqdT4zUed8SQ6uMIaWI3u5ivXXx1XKw38LsIMz2wuyPsJ4eEzlAqS-3jxj_pv-hvgCWnm7s</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Casati, Matteo</creator><creator>Wang, Jing Ping</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2207-4807</orcidid></search><sort><creationdate>20200301</creationdate><title>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</title><author>Casati, Matteo ; Wang, Jing Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Canonical forms</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Functionals</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casati, Matteo</au><au>Wang, Jing Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>374</volume><issue>3</issue><spage>1497</spage><epage>1529</epage><pages>1497-1529</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this paper we extend the notion of Poisson–Lichnerowicz cohomology, an object encapsulating the building blocks for the theory of deformations of Hamiltonian operators, to the difference case. A local scalar difference Hamiltonian operator is a polynomial in the shift operator and its inverse, with coefficients in the algebra of difference functions, endowing the space of local functionals with the structure of a Lie algebra. Its Poisson–Lichnerowicz cohomology carries information about the center, the symmetries and the admissible deformations of such an algebra. The analogue notion for the differential case has been widely investigated: the first and most important result is the triviality of all but the lowest cohomology for first order Hamiltonian differential operators, due to Getzler. We study the Poisson–Lichnerowicz cohomology for the operator
K
0
=
S
-
S
-
1
, which is the normal form for
(
-
1
,
1
)
order scalar difference Hamiltonian operators; we obtain the same result as Getzler did, namely
H
p
(
K
0
)
=
0
∀
p
>
1
, and explicitly compute
H
0
(
K
0
)
and
H
1
(
K
0
)
. We then apply our main result to the classification of lower order scalar Hamiltonian operators recently obtained by De Sole, Kac, Valeri, and Wakimoto.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03497-2</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-2207-4807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2020-03, Vol.374 (3), p.1497-1529 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2376957369 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algebra Canonical forms Classical and Quantum Gravitation Complex Systems Deformation Differential equations Functionals Homology Lie groups Mathematical analysis Mathematical and Computational Physics Mathematical Physics Operators (mathematics) Physics Physics and Astronomy Polynomials Quantum Physics Relativity Theory Theoretical |
title | A Darboux–Getzler Theorem for Scalar Difference Hamiltonian Operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Darboux%E2%80%93Getzler%20Theorem%20for%20Scalar%20Difference%20Hamiltonian%20Operators&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Casati,%20Matteo&rft.date=2020-03-01&rft.volume=374&rft.issue=3&rft.spage=1497&rft.epage=1529&rft.pages=1497-1529&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03497-2&rft_dat=%3Cproquest_cross%3E2376957369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-eaadebf14af4e884c273f456e804070d31ea67f140789fb0fa3eef46c806bdd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376957369&rft_id=info:pmid/&rfr_iscdi=true |