Loading…
Classical approach to Ramanujan’s modular equations of septic degree
In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s 1 ψ 1 summation formula and certain theta function identities.
Saved in:
Published in: | The Ramanujan journal 2020-04, Vol.51 (3), p.553-561 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-7b8696370a7d0d67d0aa7dbe1329bc5bdbfe3db294a9708e313c37c1fb125c7e3 |
container_end_page | 561 |
container_issue | 3 |
container_start_page | 553 |
container_title | The Ramanujan journal |
container_volume | 51 |
creator | Vasuki, K. R. Mahadevaswamy |
description | In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s
1
ψ
1
summation formula and certain theta function identities. |
doi_str_mv | 10.1007/s11139-018-0118-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377101112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377101112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7b8696370a7d0d67d0aa7dbe1329bc5bdbfe3db294a9708e313c37c1fb125c7e3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEObBrp3F8RBWlSJWQEJwt23FKqjRO7eTAjd_g9_gSXAWJE4edncPMPoaQa4RbBBB3ERG5zADLVAnyEzLDhWCZ5MBPE-cly3KQcE4uYtwBQA5czMhq2eoYG6tbqvs-eG3f6eDpi97rbtzp7vvzK9K9r8ZWB-oOox4a30XqaxpdPzSWVm4bnLskZ7Vuo7v67XPytnp4Xa6zzfPj0_J-k1lWlEMmTFnIggvQooKqSKATMw45k8YuTGVqxyvDZK6lgNJx5JYLi7VBtrDC8Tm5meamUw-ji4Pa-TF0aaViXAhMvyNLKpxUNvgYg6tVH5q9Dh8KQR3jUlNcKsWljnGpPHnY5IlJ221d-Jv8v-kHKlRuDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377101112</pqid></control><display><type>article</type><title>Classical approach to Ramanujan’s modular equations of septic degree</title><source>Springer Nature</source><creator>Vasuki, K. R. ; Mahadevaswamy</creator><creatorcontrib>Vasuki, K. R. ; Mahadevaswamy</creatorcontrib><description>In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s
1
ψ
1
summation formula and certain theta function identities.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-018-0118-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Identities ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2020-04, Vol.51 (3), p.553-561</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>2019© Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7b8696370a7d0d67d0aa7dbe1329bc5bdbfe3db294a9708e313c37c1fb125c7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Vasuki, K. R.</creatorcontrib><creatorcontrib>Mahadevaswamy</creatorcontrib><title>Classical approach to Ramanujan’s modular equations of septic degree</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s
1
ψ
1
summation formula and certain theta function identities.</description><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Identities</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLPEObBrp3F8RBWlSJWQEJwt23FKqjRO7eTAjd_g9_gSXAWJE4edncPMPoaQa4RbBBB3ERG5zADLVAnyEzLDhWCZ5MBPE-cly3KQcE4uYtwBQA5czMhq2eoYG6tbqvs-eG3f6eDpi97rbtzp7vvzK9K9r8ZWB-oOox4a30XqaxpdPzSWVm4bnLskZ7Vuo7v67XPytnp4Xa6zzfPj0_J-k1lWlEMmTFnIggvQooKqSKATMw45k8YuTGVqxyvDZK6lgNJx5JYLi7VBtrDC8Tm5meamUw-ji4Pa-TF0aaViXAhMvyNLKpxUNvgYg6tVH5q9Dh8KQR3jUlNcKsWljnGpPHnY5IlJ221d-Jv8v-kHKlRuDg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Vasuki, K. R.</creator><creator>Mahadevaswamy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Classical approach to Ramanujan’s modular equations of septic degree</title><author>Vasuki, K. R. ; Mahadevaswamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7b8696370a7d0d67d0aa7dbe1329bc5bdbfe3db294a9708e313c37c1fb125c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Identities</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasuki, K. R.</creatorcontrib><creatorcontrib>Mahadevaswamy</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasuki, K. R.</au><au>Mahadevaswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical approach to Ramanujan’s modular equations of septic degree</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>51</volume><issue>3</issue><spage>553</spage><epage>561</epage><pages>553-561</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this paper, we prove six Ramanujan’s modular equations of septic degree by employing Ramanujan’s
1
ψ
1
summation formula and certain theta function identities.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-018-0118-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2020-04, Vol.51 (3), p.553-561 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2377101112 |
source | Springer Nature |
subjects | Combinatorics Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Identities Mathematical analysis Mathematics Mathematics and Statistics Number Theory |
title | Classical approach to Ramanujan’s modular equations of septic degree |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20approach%20to%20Ramanujan%E2%80%99s%20modular%20equations%20of%20septic%20degree&rft.jtitle=The%20Ramanujan%20journal&rft.au=Vasuki,%20K.%20R.&rft.date=2020-04-01&rft.volume=51&rft.issue=3&rft.spage=553&rft.epage=561&rft.pages=553-561&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-018-0118-4&rft_dat=%3Cproquest_cross%3E2377101112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-7b8696370a7d0d67d0aa7dbe1329bc5bdbfe3db294a9708e313c37c1fb125c7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377101112&rft_id=info:pmid/&rfr_iscdi=true |