Loading…
Achieving Picosecond-Level Phase Stability in Timing Distribution Systems With Xilinx Ultrascale Transceivers
This article discusses the challenges posed on the field-programmable gate array (FPGA) transceivers in terms of phase-determinism requirements for timing distribution at the Large Hadron Collider (LHC) experiments. Having a fixed phase after startups is a major requirement, and the typical phase va...
Saved in:
Published in: | IEEE transactions on nuclear science 2020-03, Vol.67 (3), p.473-481 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article discusses the challenges posed on the field-programmable gate array (FPGA) transceivers in terms of phase-determinism requirements for timing distribution at the Large Hadron Collider (LHC) experiments. Having a fixed phase after startups is a major requirement, and the typical phase variations observed in the order of tens of picoseconds after startups while using the state-of-the-art design techniques are no longer sufficient. Each limitation observed in the transmitter and receiver paths of the high-speed transceivers embedded in the Xilinx Ultrascale FPGA family is further investigated and solutions are proposed. Tests in hardware using Xilinx FPGA evaluation boards are presented. In addition to a higher phase determinism, the techniques presented make it possible to fine-tune the skew of a link with a picosecond resolution, greatly simplifying clock-domain crossing inside the FPGAs and providing better short-term stability for the FPGA-recovered clock in a high-speed link. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2020.2968112 |