Loading…

Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation

Unlike most of the upper layer authentication mechanisms, the physical (PHY) layer authentication takes advantages of channel impulse response from wireless propagation to identify transmitted packages with low-resource consumption, and machine learning methods are effective ways to improve its impl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2020-03, Vol.7 (3), p.2077-2088
Main Authors: Liao, Run-Fa, Wen, Hong, Chen, Songlin, Xie, Feiyi, Pan, Fei, Tang, Jie, Song, Huanhuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893
cites cdi_FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893
container_end_page 2088
container_issue 3
container_start_page 2077
container_title IEEE internet of things journal
container_volume 7
creator Liao, Run-Fa
Wen, Hong
Chen, Songlin
Xie, Feiyi
Pan, Fei
Tang, Jie
Song, Huanhuan
description Unlike most of the upper layer authentication mechanisms, the physical (PHY) layer authentication takes advantages of channel impulse response from wireless propagation to identify transmitted packages with low-resource consumption, and machine learning methods are effective ways to improve its implementation. However, the training of the machine-learning-based PHY-layer authentication requires a large number of training samples, which makes the training process time consuming and computationally resource intensive. In this article, we propose a data augmented multiuser PHY-layer authentication scheme to enhance the security of mobile-edge computing system, an emergent architecture in the Internet of Things (IoT). Three data augmentation algorithms are proposed to speed up the establishment of the authentication model and improve the authentication success rate. By combining the deep neural network with data augmentation methods, the performance of the proposed multiuser PHY-layer authentication scheme is improved and the training speed is accelerated, even with fewer training samples. Extensive simulations are conducted under the real industry IoT environment and the figures illustrate the effectiveness of our approach.
doi_str_mv 10.1109/JIOT.2019.2960099
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2377360413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8935162</ieee_id><sourcerecordid>2377360413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AMZLE8-L03a3pUeC_zAYPKzx2HSXLlsCXWy7B769RYjxNDMvvzcveQjdEhgTAvLhbb4sxxSIHFPJAaS8QAPKqMhyzunlv_0ajULYAECyFUTyASrf-220fTAef7SHYGu9xQt9SOe0j61xMSnRdg5bh-cuGu9MxF2Dy9a6dcBfNrb4UUed8PUu4b_wDbpq9DaY0XkO0efzUzl7zRbLl_lsushqKlnMcoCGg6lEbggveCVAC814TiaSUOCCFaKhxaSAfFXJlWlEXU3yqk4CF1WC2BDdn_7ufffdmxDVpuu9S5GKMiEYh5ywRJETVfsuBG8atfd2p_1BEVDH_tSxP3XsT537S567k8caY_74FFkQTtkPfFtqlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377360413</pqid></control><display><type>article</type><title>Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liao, Run-Fa ; Wen, Hong ; Chen, Songlin ; Xie, Feiyi ; Pan, Fei ; Tang, Jie ; Song, Huanhuan</creator><creatorcontrib>Liao, Run-Fa ; Wen, Hong ; Chen, Songlin ; Xie, Feiyi ; Pan, Fei ; Tang, Jie ; Song, Huanhuan</creatorcontrib><description>Unlike most of the upper layer authentication mechanisms, the physical (PHY) layer authentication takes advantages of channel impulse response from wireless propagation to identify transmitted packages with low-resource consumption, and machine learning methods are effective ways to improve its implementation. However, the training of the machine-learning-based PHY-layer authentication requires a large number of training samples, which makes the training process time consuming and computationally resource intensive. In this article, we propose a data augmented multiuser PHY-layer authentication scheme to enhance the security of mobile-edge computing system, an emergent architecture in the Internet of Things (IoT). Three data augmentation algorithms are proposed to speed up the establishment of the authentication model and improve the authentication success rate. By combining the deep neural network with data augmentation methods, the performance of the proposed multiuser PHY-layer authentication scheme is improved and the training speed is accelerated, even with fewer training samples. Extensive simulations are conducted under the real industry IoT environment and the figures illustrate the effectiveness of our approach.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2960099</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Authentication ; Computer simulation ; Data augmentation ; deep neural network (DNN) ; Edge computing ; Identification methods ; Impulse response ; Internet of Things ; Machine learning ; Machine learning algorithms ; Mobile computing ; mobile-edge computing (MEC) ; Neural networks ; physical (PHY) layer authentication ; Training ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2020-03, Vol.7 (3), p.2077-2088</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893</citedby><cites>FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893</cites><orcidid>0000-0003-3256-2510 ; 0000-0001-8591-6939 ; 0000-0002-2504-5630 ; 0000-0002-0073-6101 ; 0000-0001-5796-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8935162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Chen, Songlin</creatorcontrib><creatorcontrib>Xie, Feiyi</creatorcontrib><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><title>Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Unlike most of the upper layer authentication mechanisms, the physical (PHY) layer authentication takes advantages of channel impulse response from wireless propagation to identify transmitted packages with low-resource consumption, and machine learning methods are effective ways to improve its implementation. However, the training of the machine-learning-based PHY-layer authentication requires a large number of training samples, which makes the training process time consuming and computationally resource intensive. In this article, we propose a data augmented multiuser PHY-layer authentication scheme to enhance the security of mobile-edge computing system, an emergent architecture in the Internet of Things (IoT). Three data augmentation algorithms are proposed to speed up the establishment of the authentication model and improve the authentication success rate. By combining the deep neural network with data augmentation methods, the performance of the proposed multiuser PHY-layer authentication scheme is improved and the training speed is accelerated, even with fewer training samples. Extensive simulations are conducted under the real industry IoT environment and the figures illustrate the effectiveness of our approach.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Authentication</subject><subject>Computer simulation</subject><subject>Data augmentation</subject><subject>deep neural network (DNN)</subject><subject>Edge computing</subject><subject>Identification methods</subject><subject>Impulse response</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Neural networks</subject><subject>physical (PHY) layer authentication</subject><subject>Training</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PAjEQxRujiQT5AMZLE8-L03a3pUeC_zAYPKzx2HSXLlsCXWy7B769RYjxNDMvvzcveQjdEhgTAvLhbb4sxxSIHFPJAaS8QAPKqMhyzunlv_0ajULYAECyFUTyASrf-220fTAef7SHYGu9xQt9SOe0j61xMSnRdg5bh-cuGu9MxF2Dy9a6dcBfNrb4UUed8PUu4b_wDbpq9DaY0XkO0efzUzl7zRbLl_lsushqKlnMcoCGg6lEbggveCVAC814TiaSUOCCFaKhxaSAfFXJlWlEXU3yqk4CF1WC2BDdn_7ufffdmxDVpuu9S5GKMiEYh5ywRJETVfsuBG8atfd2p_1BEVDH_tSxP3XsT537S567k8caY_74FFkQTtkPfFtqlw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liao, Run-Fa</creator><creator>Wen, Hong</creator><creator>Chen, Songlin</creator><creator>Xie, Feiyi</creator><creator>Pan, Fei</creator><creator>Tang, Jie</creator><creator>Song, Huanhuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3256-2510</orcidid><orcidid>https://orcid.org/0000-0001-8591-6939</orcidid><orcidid>https://orcid.org/0000-0002-2504-5630</orcidid><orcidid>https://orcid.org/0000-0002-0073-6101</orcidid><orcidid>https://orcid.org/0000-0001-5796-6883</orcidid></search><sort><creationdate>20200301</creationdate><title>Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation</title><author>Liao, Run-Fa ; Wen, Hong ; Chen, Songlin ; Xie, Feiyi ; Pan, Fei ; Tang, Jie ; Song, Huanhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Authentication</topic><topic>Computer simulation</topic><topic>Data augmentation</topic><topic>deep neural network (DNN)</topic><topic>Edge computing</topic><topic>Identification methods</topic><topic>Impulse response</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Neural networks</topic><topic>physical (PHY) layer authentication</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Run-Fa</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Chen, Songlin</creatorcontrib><creatorcontrib>Xie, Feiyi</creatorcontrib><creatorcontrib>Pan, Fei</creatorcontrib><creatorcontrib>Tang, Jie</creatorcontrib><creatorcontrib>Song, Huanhuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Run-Fa</au><au>Wen, Hong</au><au>Chen, Songlin</au><au>Xie, Feiyi</au><au>Pan, Fei</au><au>Tang, Jie</au><au>Song, Huanhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>2077</spage><epage>2088</epage><pages>2077-2088</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Unlike most of the upper layer authentication mechanisms, the physical (PHY) layer authentication takes advantages of channel impulse response from wireless propagation to identify transmitted packages with low-resource consumption, and machine learning methods are effective ways to improve its implementation. However, the training of the machine-learning-based PHY-layer authentication requires a large number of training samples, which makes the training process time consuming and computationally resource intensive. In this article, we propose a data augmented multiuser PHY-layer authentication scheme to enhance the security of mobile-edge computing system, an emergent architecture in the Internet of Things (IoT). Three data augmentation algorithms are proposed to speed up the establishment of the authentication model and improve the authentication success rate. By combining the deep neural network with data augmentation methods, the performance of the proposed multiuser PHY-layer authentication scheme is improved and the training speed is accelerated, even with fewer training samples. Extensive simulations are conducted under the real industry IoT environment and the figures illustrate the effectiveness of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2960099</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3256-2510</orcidid><orcidid>https://orcid.org/0000-0001-8591-6939</orcidid><orcidid>https://orcid.org/0000-0002-2504-5630</orcidid><orcidid>https://orcid.org/0000-0002-0073-6101</orcidid><orcidid>https://orcid.org/0000-0001-5796-6883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-03, Vol.7 (3), p.2077-2088
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2377360413
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial neural networks
Authentication
Computer simulation
Data augmentation
deep neural network (DNN)
Edge computing
Identification methods
Impulse response
Internet of Things
Machine learning
Machine learning algorithms
Mobile computing
mobile-edge computing (MEC)
Neural networks
physical (PHY) layer authentication
Training
Wireless communication
title Multiuser Physical Layer Authentication in Internet of Things With Data Augmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiuser%20Physical%20Layer%20Authentication%20in%20Internet%20of%20Things%20With%20Data%20Augmentation&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liao,%20Run-Fa&rft.date=2020-03-01&rft.volume=7&rft.issue=3&rft.spage=2077&rft.epage=2088&rft.pages=2077-2088&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2960099&rft_dat=%3Cproquest_cross%3E2377360413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-400f60eb74e1656b70a7a36418912067357f258504db9def7cb84bc85067b1893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377360413&rft_id=info:pmid/&rft_ieee_id=8935162&rfr_iscdi=true