Loading…

Towards a robust baseline for long-term monitoring of Antarctic coastal benthos

The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:Hydrobiologia 2020-04, Vol.847 (7), p.1753-1771
Main Authors: Piazza, Paola, Gattone, Stefano Antonio, Guzzi, Alice, Schiaparelli, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23
cites cdi_FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23
container_end_page 1771
container_issue 7
container_start_page 1753
container_title Hydrobiologia
container_volume 847
creator Piazza, Paola
Gattone, Stefano Antonio
Guzzi, Alice
Schiaparelli, Stefano
description The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this study, we used an emerging, photogrammetry-based technique to simulate a pilot study and test the efficiency of different sampling schemes (Simple Random—SRS-, Systematic—SyS- and Strip—SS-) for estimating the abundances of megabenthic taxa. For taxa showing an aggregated distribution, we also applied an adaptive cluster sampling (ACS) design. In almost the totality of cases, the best accuracy of estimates was achieved with SyS combined with plots of 0.0625 m 2 . ACS design gave better performances but required a calibration of both the initial sample size and the threshold value to increase efficiency. The ‘one-size-fits-all’ 1 m 2 plot size never emerged as the best in any sampling schemes, hence the previously published literature data can be biased. This study represents a fine-scale reference baseline for the study area and the simulations performed will be pivotal in establishing sound-monitoring programmes with sufficient statistical power to detect significative changes in the Antarctic benthos.
doi_str_mv 10.1007/s10750-020-04177-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2377614376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617744686</galeid><sourcerecordid>A617744686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKt_wFPAk4etk2R3s3ssxY9CQdB6Dtl0tm7ZJjVJUf-9qSuIFwkhkDzPZJiXkEsGEwYgbwIDWUAGPO2cSZnxIzJihRRZwZg8JiMAVmUVK6pTchbCBpJUcxiRx6V7134VqKbeNfsQaaMD9p1F2jpPe2fXWUS_pVtnu-h8Z9fUtXRqo_YmdoYap0PUPW3QxlcXzslJq_uAFz_nmLzc3S5nD9ni8X4-my4yI2oeM5RVLnld5yUIUa5MK2vZNAgIhrEGdCUlQlGkxxYryBsOwE0jalGtisJoLsbkaqi78-5tjyGqjdt7m75UXEhZslzIMlGTgVrrHlVnWxe9NmmtcNsZZ7Ht0v20TBPL87I6CNd_hMRE_IhrvQ9BzZ-f_rJ8YI13IXhs1c53W-0_FQN1SEUNqaiUivpORR36FoMUdodZov_t-x_rC0TIjXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377614376</pqid></control><display><type>article</type><title>Towards a robust baseline for long-term monitoring of Antarctic coastal benthos</title><source>Springer Link</source><creator>Piazza, Paola ; Gattone, Stefano Antonio ; Guzzi, Alice ; Schiaparelli, Stefano</creator><creatorcontrib>Piazza, Paola ; Gattone, Stefano Antonio ; Guzzi, Alice ; Schiaparelli, Stefano</creatorcontrib><description>The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this study, we used an emerging, photogrammetry-based technique to simulate a pilot study and test the efficiency of different sampling schemes (Simple Random—SRS-, Systematic—SyS- and Strip—SS-) for estimating the abundances of megabenthic taxa. For taxa showing an aggregated distribution, we also applied an adaptive cluster sampling (ACS) design. In almost the totality of cases, the best accuracy of estimates was achieved with SyS combined with plots of 0.0625 m 2 . ACS design gave better performances but required a calibration of both the initial sample size and the threshold value to increase efficiency. The ‘one-size-fits-all’ 1 m 2 plot size never emerged as the best in any sampling schemes, hence the previously published literature data can be biased. This study represents a fine-scale reference baseline for the study area and the simulations performed will be pivotal in establishing sound-monitoring programmes with sufficient statistical power to detect significative changes in the Antarctic benthos.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-020-04177-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive sampling ; Aquatic ecology ; Benthos ; Biomedical and Life Sciences ; Change detection ; Design ; Ecology ; Efficiency ; Environmental monitoring ; Freshwater &amp; Marine Ecology ; Life Sciences ; Monitoring ; Photogrammetry ; Robustness ; Sampling ; Sampling designs ; Trends ; Trends in Aquatic Ecology III ; Zoology</subject><ispartof>Hydrobiologia, 2020-04, Vol.847 (7), p.1753-1771</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Hydrobiologia is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23</citedby><cites>FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23</cites><orcidid>0000-0002-0137-3605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piazza, Paola</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Guzzi, Alice</creatorcontrib><creatorcontrib>Schiaparelli, Stefano</creatorcontrib><title>Towards a robust baseline for long-term monitoring of Antarctic coastal benthos</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this study, we used an emerging, photogrammetry-based technique to simulate a pilot study and test the efficiency of different sampling schemes (Simple Random—SRS-, Systematic—SyS- and Strip—SS-) for estimating the abundances of megabenthic taxa. For taxa showing an aggregated distribution, we also applied an adaptive cluster sampling (ACS) design. In almost the totality of cases, the best accuracy of estimates was achieved with SyS combined with plots of 0.0625 m 2 . ACS design gave better performances but required a calibration of both the initial sample size and the threshold value to increase efficiency. The ‘one-size-fits-all’ 1 m 2 plot size never emerged as the best in any sampling schemes, hence the previously published literature data can be biased. This study represents a fine-scale reference baseline for the study area and the simulations performed will be pivotal in establishing sound-monitoring programmes with sufficient statistical power to detect significative changes in the Antarctic benthos.</description><subject>Adaptive sampling</subject><subject>Aquatic ecology</subject><subject>Benthos</subject><subject>Biomedical and Life Sciences</subject><subject>Change detection</subject><subject>Design</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Environmental monitoring</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Life Sciences</subject><subject>Monitoring</subject><subject>Photogrammetry</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>Trends</subject><subject>Trends in Aquatic Ecology III</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhoMoWKt_wFPAk4etk2R3s3ssxY9CQdB6Dtl0tm7ZJjVJUf-9qSuIFwkhkDzPZJiXkEsGEwYgbwIDWUAGPO2cSZnxIzJihRRZwZg8JiMAVmUVK6pTchbCBpJUcxiRx6V7134VqKbeNfsQaaMD9p1F2jpPe2fXWUS_pVtnu-h8Z9fUtXRqo_YmdoYap0PUPW3QxlcXzslJq_uAFz_nmLzc3S5nD9ni8X4-my4yI2oeM5RVLnld5yUIUa5MK2vZNAgIhrEGdCUlQlGkxxYryBsOwE0jalGtisJoLsbkaqi78-5tjyGqjdt7m75UXEhZslzIMlGTgVrrHlVnWxe9NmmtcNsZZ7Ht0v20TBPL87I6CNd_hMRE_IhrvQ9BzZ-f_rJ8YI13IXhs1c53W-0_FQN1SEUNqaiUivpORR36FoMUdodZov_t-x_rC0TIjXo</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Piazza, Paola</creator><creator>Gattone, Stefano Antonio</creator><creator>Guzzi, Alice</creator><creator>Schiaparelli, Stefano</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-0137-3605</orcidid></search><sort><creationdate>20200401</creationdate><title>Towards a robust baseline for long-term monitoring of Antarctic coastal benthos</title><author>Piazza, Paola ; Gattone, Stefano Antonio ; Guzzi, Alice ; Schiaparelli, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive sampling</topic><topic>Aquatic ecology</topic><topic>Benthos</topic><topic>Biomedical and Life Sciences</topic><topic>Change detection</topic><topic>Design</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Environmental monitoring</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Life Sciences</topic><topic>Monitoring</topic><topic>Photogrammetry</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>Trends</topic><topic>Trends in Aquatic Ecology III</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piazza, Paola</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Guzzi, Alice</creatorcontrib><creatorcontrib>Schiaparelli, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piazza, Paola</au><au>Gattone, Stefano Antonio</au><au>Guzzi, Alice</au><au>Schiaparelli, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a robust baseline for long-term monitoring of Antarctic coastal benthos</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>847</volume><issue>7</issue><spage>1753</spage><epage>1771</epage><pages>1753-1771</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>The Southern Ocean represents one of the world regions most sensitive to warming and there is an urgent need for quantitative data to understand changes in coastal communities. This goal can be achieved through the establishment of permanent monitoring sites and robust sampling designs. In this study, we used an emerging, photogrammetry-based technique to simulate a pilot study and test the efficiency of different sampling schemes (Simple Random—SRS-, Systematic—SyS- and Strip—SS-) for estimating the abundances of megabenthic taxa. For taxa showing an aggregated distribution, we also applied an adaptive cluster sampling (ACS) design. In almost the totality of cases, the best accuracy of estimates was achieved with SyS combined with plots of 0.0625 m 2 . ACS design gave better performances but required a calibration of both the initial sample size and the threshold value to increase efficiency. The ‘one-size-fits-all’ 1 m 2 plot size never emerged as the best in any sampling schemes, hence the previously published literature data can be biased. This study represents a fine-scale reference baseline for the study area and the simulations performed will be pivotal in establishing sound-monitoring programmes with sufficient statistical power to detect significative changes in the Antarctic benthos.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-020-04177-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0137-3605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2020-04, Vol.847 (7), p.1753-1771
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_journals_2377614376
source Springer Link
subjects Adaptive sampling
Aquatic ecology
Benthos
Biomedical and Life Sciences
Change detection
Design
Ecology
Efficiency
Environmental monitoring
Freshwater & Marine Ecology
Life Sciences
Monitoring
Photogrammetry
Robustness
Sampling
Sampling designs
Trends
Trends in Aquatic Ecology III
Zoology
title Towards a robust baseline for long-term monitoring of Antarctic coastal benthos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20robust%20baseline%20for%20long-term%20monitoring%20of%20Antarctic%20coastal%20benthos&rft.jtitle=Hydrobiologia&rft.au=Piazza,%20Paola&rft.date=2020-04-01&rft.volume=847&rft.issue=7&rft.spage=1753&rft.epage=1771&rft.pages=1753-1771&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-020-04177-2&rft_dat=%3Cgale_proqu%3EA617744686%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-e7847299460336dcf797bbe0e0c11b0a877e055033fe804b2002cb3938d55ca23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2377614376&rft_id=info:pmid/&rft_galeid=A617744686&rfr_iscdi=true