Loading…
Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy
PD-L1/PD-1 blocking antibodies have demonstrated therapeutic efficacy across a range of human cancers. Extending this benefit to a greater number of patients, however, will require a better understanding of how these therapies instigate anticancer immunity. Although the PD-L1/PD-1 axis is typically...
Saved in:
Published in: | Science translational medicine 2020-03, Vol.12 (534), p.1 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PD-L1/PD-1 blocking antibodies have demonstrated therapeutic efficacy across a range of human cancers. Extending this benefit to a greater number of patients, however, will require a better understanding of how these therapies instigate anticancer immunity. Although the PD-L1/PD-1 axis is typically associated with T cell function, we demonstrate here that dendritic cells (DCs) are an important target of PD-L1 blocking antibody. PD-L1 binds two receptors, PD-1 and B7.1 (CD80). PD-L1 is expressed much more abundantly than B7.1 on peripheral and tumor-associated DCs in patients with cancer. Blocking PD-L1 on DCs relieves B7.1 sequestration in cis by PD-L1, which allows the B7.1/CD28 interaction to enhance T cell priming. In line with this, in patients with renal cell carcinoma or non-small cell lung cancer treated with atezolizumab (PD-L1 blockade), a DC gene signature is strongly associated with improved overall survival. These data suggest that PD-L1 blockade reinvigorates DC function to generate potent anticancer T cell immunity. |
---|---|
ISSN: | 1946-6234 1946-6242 1946-3242 |
DOI: | 10.1126/scitranslmed.aav7431 |