Loading…

RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing

Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic envi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2020-01, Vol.29, p.1-1
Main Authors: Zhang, Pingping, Liu, Wei, Lei, Yinjie, Wang, Hongyu, Lu, Huchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3
cites cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 29
creator Zhang, Pingping
Liu, Wei
Lei, Yinjie
Wang, Hongyu
Lu, Huchuan
description Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.
doi_str_mv 10.1109/TIP.2020.2978339
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2379348408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031697</ieee_id><sourcerecordid>2379348408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</originalsourceid><addsrcrecordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOmrRJvJXFx4JoXfVc0nYq1T7WpGXZ_94su3rwNIH5Zia_j5AzBhPGQF-_zdJJCCFMQi0V53qHHDItWAAgwl3_hkgGkgl9QI6c-wRgImLxPjngIYul0tEheZkn6RMON3SOri5H09BksP3oaLqypq1L6pvL3n7Rqrd01i56O5iuwCBZGov0dbCIA30tsEOaGuvq7uOE7FWmcXi6rcfk_e72bfoQPD7fz6bJY1BwIYdAcR0VAkoDeY65MCJGXZpQG8x9mAK4EGA8E0ppFKiqUqaMI-ljK8FEXPBjcrXZu7D994huyNraFdg0pkMfIAu5lNyfAvDo5T_0sx9t53-3pjQXSoDyFGyowvbOWayyha1bY1cZg2ytO_O6s7XubKvbj1xsF495i-XfwK9fD5xvgBoR_9oaOIu15D__LYGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379348408</pqid></control><display><type>article</type><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</creator><creatorcontrib>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</creatorcontrib><description>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2978339</identifier><identifier>PMID: 32167895</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Driving ; fully convolutional network ; importance-aware feature selection ; Labeling ; Labels ; Machine learning ; residual atrous spatial pyramid ; Scene analysis ; Semantics ; Street scene parsing ; Walkways</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</citedby><cites>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</cites><orcidid>0000-0002-1038-412X ; 0000-0003-1206-1444 ; 0000-0001-6856-3342 ; 0000-0001-6351-9019 ; 0000-0002-6668-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</description><subject>Driving</subject><subject>fully convolutional network</subject><subject>importance-aware feature selection</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>residual atrous spatial pyramid</subject><subject>Scene analysis</subject><subject>Semantics</subject><subject>Street scene parsing</subject><subject>Walkways</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOmrRJvJXFx4JoXfVc0nYq1T7WpGXZ_94su3rwNIH5Zia_j5AzBhPGQF-_zdJJCCFMQi0V53qHHDItWAAgwl3_hkgGkgl9QI6c-wRgImLxPjngIYul0tEheZkn6RMON3SOri5H09BksP3oaLqypq1L6pvL3n7Rqrd01i56O5iuwCBZGov0dbCIA30tsEOaGuvq7uOE7FWmcXi6rcfk_e72bfoQPD7fz6bJY1BwIYdAcR0VAkoDeY65MCJGXZpQG8x9mAK4EGA8E0ppFKiqUqaMI-ljK8FEXPBjcrXZu7D994huyNraFdg0pkMfIAu5lNyfAvDo5T_0sx9t53-3pjQXSoDyFGyowvbOWayyha1bY1cZg2ytO_O6s7XubKvbj1xsF495i-XfwK9fD5xvgBoR_9oaOIu15D__LYGB</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Pingping</creator><creator>Liu, Wei</creator><creator>Lei, Yinjie</creator><creator>Wang, Hongyu</creator><creator>Lu, Huchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1038-412X</orcidid><orcidid>https://orcid.org/0000-0003-1206-1444</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0001-6351-9019</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid></search><sort><creationdate>20200101</creationdate><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><author>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Driving</topic><topic>fully convolutional network</topic><topic>importance-aware feature selection</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>residual atrous spatial pyramid</topic><topic>Scene analysis</topic><topic>Semantics</topic><topic>Street scene parsing</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pingping</au><au>Liu, Wei</au><au>Lei, Yinjie</au><au>Wang, Hongyu</au><au>Lu, Huchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32167895</pmid><doi>10.1109/TIP.2020.2978339</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1038-412X</orcidid><orcidid>https://orcid.org/0000-0003-1206-1444</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0001-6351-9019</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2379348408
source IEEE Xplore (Online service)
subjects Driving
fully convolutional network
importance-aware feature selection
Labeling
Labels
Machine learning
residual atrous spatial pyramid
Scene analysis
Semantics
Street scene parsing
Walkways
title RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAPNet:%20Residual%20Atrous%20Pyramid%20Network%20for%20Importance-Aware%20Street%20Scene%20Parsing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Pingping&rft.date=2020-01-01&rft.volume=29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2978339&rft_dat=%3Cproquest_ieee_%3E2379348408%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379348408&rft_id=info:pmid/32167895&rft_ieee_id=9031697&rfr_iscdi=true