Loading…
RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing
Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic envi...
Saved in:
Published in: | IEEE transactions on image processing 2020-01, Vol.29, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Zhang, Pingping Liu, Wei Lei, Yinjie Wang, Hongyu Lu, Huchuan |
description | Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels. |
doi_str_mv | 10.1109/TIP.2020.2978339 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2379348408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9031697</ieee_id><sourcerecordid>2379348408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</originalsourceid><addsrcrecordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOmrRJvJXFx4JoXfVc0nYq1T7WpGXZ_94su3rwNIH5Zia_j5AzBhPGQF-_zdJJCCFMQi0V53qHHDItWAAgwl3_hkgGkgl9QI6c-wRgImLxPjngIYul0tEheZkn6RMON3SOri5H09BksP3oaLqypq1L6pvL3n7Rqrd01i56O5iuwCBZGov0dbCIA30tsEOaGuvq7uOE7FWmcXi6rcfk_e72bfoQPD7fz6bJY1BwIYdAcR0VAkoDeY65MCJGXZpQG8x9mAK4EGA8E0ppFKiqUqaMI-ljK8FEXPBjcrXZu7D994huyNraFdg0pkMfIAu5lNyfAvDo5T_0sx9t53-3pjQXSoDyFGyowvbOWayyha1bY1cZg2ytO_O6s7XubKvbj1xsF495i-XfwK9fD5xvgBoR_9oaOIu15D__LYGB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379348408</pqid></control><display><type>article</type><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</creator><creatorcontrib>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</creatorcontrib><description>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2978339</identifier><identifier>PMID: 32167895</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Driving ; fully convolutional network ; importance-aware feature selection ; Labeling ; Labels ; Machine learning ; residual atrous spatial pyramid ; Scene analysis ; Semantics ; Street scene parsing ; Walkways</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</citedby><cites>FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</cites><orcidid>0000-0002-1038-412X ; 0000-0003-1206-1444 ; 0000-0001-6856-3342 ; 0000-0001-6351-9019 ; 0000-0002-6668-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9031697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</description><subject>Driving</subject><subject>fully convolutional network</subject><subject>importance-aware feature selection</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>residual atrous spatial pyramid</subject><subject>Scene analysis</subject><subject>Semantics</subject><subject>Street scene parsing</subject><subject>Walkways</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLxDAQh4Movu-CIAEvXrpOmrRJvJXFx4JoXfVc0nYq1T7WpGXZ_94su3rwNIH5Zia_j5AzBhPGQF-_zdJJCCFMQi0V53qHHDItWAAgwl3_hkgGkgl9QI6c-wRgImLxPjngIYul0tEheZkn6RMON3SOri5H09BksP3oaLqypq1L6pvL3n7Rqrd01i56O5iuwCBZGov0dbCIA30tsEOaGuvq7uOE7FWmcXi6rcfk_e72bfoQPD7fz6bJY1BwIYdAcR0VAkoDeY65MCJGXZpQG8x9mAK4EGA8E0ppFKiqUqaMI-ljK8FEXPBjcrXZu7D994huyNraFdg0pkMfIAu5lNyfAvDo5T_0sx9t53-3pjQXSoDyFGyowvbOWayyha1bY1cZg2ytO_O6s7XubKvbj1xsF495i-XfwK9fD5xvgBoR_9oaOIu15D__LYGB</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Pingping</creator><creator>Liu, Wei</creator><creator>Lei, Yinjie</creator><creator>Wang, Hongyu</creator><creator>Lu, Huchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1038-412X</orcidid><orcidid>https://orcid.org/0000-0003-1206-1444</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0001-6351-9019</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid></search><sort><creationdate>20200101</creationdate><title>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</title><author>Zhang, Pingping ; Liu, Wei ; Lei, Yinjie ; Wang, Hongyu ; Lu, Huchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Driving</topic><topic>fully convolutional network</topic><topic>importance-aware feature selection</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>residual atrous spatial pyramid</topic><topic>Scene analysis</topic><topic>Semantics</topic><topic>Street scene parsing</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pingping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lei, Yinjie</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pingping</au><au>Liu, Wei</au><au>Lei, Yinjie</au><au>Wang, Hongyu</au><au>Lu, Huchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Street Scene Parsing (SSP) is a fundamental and important step for autonomous driving and traffic scene understanding. Recently, Fully Convolutional Network (FCN) based methods have delivered expressive performances with the help of large-scale dense-labeling datasets. However, in urban traffic environments, not all the labels contribute equally for making the control decision. Certain labels such as pedestrian, car, bicyclist, road lane or sidewalk would be more important in comparison with labels for vegetation, sky or building. Based on this fact, in this paper we propose a novel deep learning framework, named Residual Atrous Pyramid Network (RAPNet), for importance-aware SSP. More specifically, to incorporate the importance of various object classes, we propose an Importance-Aware Feature Selection (IAFS) mechanism which automatically selects the important features for label predictions. The IAFS can operate in each convolutional block, and the semantic features with different importance are captured in different channels so that they are automatically assigned with corresponding weights. To enhance the labeling coherence, we also propose a Residual Atrous Spatial Pyramid (RASP) module to sequentially aggregate global-to-local context information in a residual refinement manner. Extensive experiments on two public benchmarks have shown that our approach achieves new state-of-the-art performances, and can consistently obtain more accurate results on the semantic classes with high importance levels.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32167895</pmid><doi>10.1109/TIP.2020.2978339</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1038-412X</orcidid><orcidid>https://orcid.org/0000-0003-1206-1444</orcidid><orcidid>https://orcid.org/0000-0001-6856-3342</orcidid><orcidid>https://orcid.org/0000-0001-6351-9019</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2379348408 |
source | IEEE Xplore (Online service) |
subjects | Driving fully convolutional network importance-aware feature selection Labeling Labels Machine learning residual atrous spatial pyramid Scene analysis Semantics Street scene parsing Walkways |
title | RAPNet: Residual Atrous Pyramid Network for Importance-Aware Street Scene Parsing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAPNet:%20Residual%20Atrous%20Pyramid%20Network%20for%20Importance-Aware%20Street%20Scene%20Parsing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Pingping&rft.date=2020-01-01&rft.volume=29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2978339&rft_dat=%3Cproquest_ieee_%3E2379348408%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-8395c40da0bbeb4a46e9da29aeb297c03440a395277a808ff8ad65711084146c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379348408&rft_id=info:pmid/32167895&rft_ieee_id=9031697&rfr_iscdi=true |