Loading…
High-performance phosphorene electromechanical actuators
Phosphorene, a two-dimensional material that can be exfoliated from black phosphorus, exhibits remarkable mechanical, thermal, electronic, and optical properties. In this work, we demonstrate that the unique structure of pristine phosphorene endows this material with exceptional quantum-mechanical p...
Saved in:
Published in: | npj computational materials 2020-03, Vol.6 (1), Article 27 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 6 |
creator | Wu, Bozhao Deng, Hui-Xiong Jia, Xiangzheng Shui, Langquan Gao, Enlai Liu, Ze |
description | Phosphorene, a two-dimensional material that can be exfoliated from black phosphorus, exhibits remarkable mechanical, thermal, electronic, and optical properties. In this work, we demonstrate that the unique structure of pristine phosphorene endows this material with exceptional quantum-mechanical performance by using first-principles calculations. Upon charge injection, the maximum actuation stress is 7.0 GPa, corresponding to the maximum actuation strain as high as 36.6% that is over seven times larger than that of graphene (4.7%) and comparable with natural muscle (20–40%). Meanwhile, the maximum volumetric work density of phosphorene (207.7 J/cm
3
) is about three orders of magnitude larger than natural muscle (0.008–0.04 J/cm
3
) and approximately six times larger than graphene (35.3 J/cm
3
). The underlying mechanism of this exceptional electromechanical performance in phosphorene is well revealed from the analysis of atomic structure and electronic structure. Finally, the influence of charge on the mechanical behaviors of phosphorene is examined by mechanical tests, indicating the sufficient structural integrity of phosphorene under the combined electromechanical loading. These findings shed light on phosphorene for promising applications in developing nanoelectromechanical actuators. |
doi_str_mv | 10.1038/s41524-020-0297-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2380033353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2380033353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLeC5-gks0l2j1LUCgUveg7Z7Gy3pd2syfbgvzdlBb14eLw5vPcGPsZuBdwLwPIhFULJgoOErMpwfcFmEpThWGm4_HNfs0VKewAQlSxlATNWrnfbjg8U2xCPrve0HLqQsiL1tKQD-TGGI_nO9TvvDkvnx5MbQ0w37Kp1h0SLH5-zj-en99Wab95eXlePG-5RVSPHWjWOJDbQ6MJUhjxiQUpLoQkMtq72vnS1AU-oSLcFlg6l0U2tjRFG4JzdTbtDDJ8nSqPdh1Ps80srsQRARIU5JaaUjyGlSK0d4u7o4pcVYM-M7MTIZkb2zMjq3JFTJ-Vsv6X4u_x_6RugE2jr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380033353</pqid></control><display><type>article</type><title>High-performance phosphorene electromechanical actuators</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Bozhao ; Deng, Hui-Xiong ; Jia, Xiangzheng ; Shui, Langquan ; Gao, Enlai ; Liu, Ze</creator><creatorcontrib>Wu, Bozhao ; Deng, Hui-Xiong ; Jia, Xiangzheng ; Shui, Langquan ; Gao, Enlai ; Liu, Ze</creatorcontrib><description>Phosphorene, a two-dimensional material that can be exfoliated from black phosphorus, exhibits remarkable mechanical, thermal, electronic, and optical properties. In this work, we demonstrate that the unique structure of pristine phosphorene endows this material with exceptional quantum-mechanical performance by using first-principles calculations. Upon charge injection, the maximum actuation stress is 7.0 GPa, corresponding to the maximum actuation strain as high as 36.6% that is over seven times larger than that of graphene (4.7%) and comparable with natural muscle (20–40%). Meanwhile, the maximum volumetric work density of phosphorene (207.7 J/cm
3
) is about three orders of magnitude larger than natural muscle (0.008–0.04 J/cm
3
) and approximately six times larger than graphene (35.3 J/cm
3
). The underlying mechanism of this exceptional electromechanical performance in phosphorene is well revealed from the analysis of atomic structure and electronic structure. Finally, the influence of charge on the mechanical behaviors of phosphorene is examined by mechanical tests, indicating the sufficient structural integrity of phosphorene under the combined electromechanical loading. These findings shed light on phosphorene for promising applications in developing nanoelectromechanical actuators.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-0297-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/1018 ; 639/925/357/1018 ; Actuation ; Actuators ; Atomic structure ; Characterization and Evaluation of Materials ; Charge injection ; Chemistry and Materials Science ; Computational Intelligence ; Electronic structure ; First principles ; Graphene ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mechanical properties ; Mechanical tests ; Muscles ; Optical properties ; Phosphorene ; Phosphorus ; Structural integrity ; Theoretical ; Two dimensional materials</subject><ispartof>npj computational materials, 2020-03, Vol.6 (1), Article 27</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713</citedby><cites>FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713</cites><orcidid>0000-0001-8202-3713 ; 0000-0002-5079-9629 ; 0000-0001-7638-8003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2380033353/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2380033353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wu, Bozhao</creatorcontrib><creatorcontrib>Deng, Hui-Xiong</creatorcontrib><creatorcontrib>Jia, Xiangzheng</creatorcontrib><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Gao, Enlai</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><title>High-performance phosphorene electromechanical actuators</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Phosphorene, a two-dimensional material that can be exfoliated from black phosphorus, exhibits remarkable mechanical, thermal, electronic, and optical properties. In this work, we demonstrate that the unique structure of pristine phosphorene endows this material with exceptional quantum-mechanical performance by using first-principles calculations. Upon charge injection, the maximum actuation stress is 7.0 GPa, corresponding to the maximum actuation strain as high as 36.6% that is over seven times larger than that of graphene (4.7%) and comparable with natural muscle (20–40%). Meanwhile, the maximum volumetric work density of phosphorene (207.7 J/cm
3
) is about three orders of magnitude larger than natural muscle (0.008–0.04 J/cm
3
) and approximately six times larger than graphene (35.3 J/cm
3
). The underlying mechanism of this exceptional electromechanical performance in phosphorene is well revealed from the analysis of atomic structure and electronic structure. Finally, the influence of charge on the mechanical behaviors of phosphorene is examined by mechanical tests, indicating the sufficient structural integrity of phosphorene under the combined electromechanical loading. These findings shed light on phosphorene for promising applications in developing nanoelectromechanical actuators.</description><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Actuation</subject><subject>Actuators</subject><subject>Atomic structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge injection</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Muscles</subject><subject>Optical properties</subject><subject>Phosphorene</subject><subject>Phosphorus</subject><subject>Structural integrity</subject><subject>Theoretical</subject><subject>Two dimensional materials</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEFLAzEQhYMoWGp_gLeC5-gks0l2j1LUCgUveg7Z7Gy3pd2syfbgvzdlBb14eLw5vPcGPsZuBdwLwPIhFULJgoOErMpwfcFmEpThWGm4_HNfs0VKewAQlSxlATNWrnfbjg8U2xCPrve0HLqQsiL1tKQD-TGGI_nO9TvvDkvnx5MbQ0w37Kp1h0SLH5-zj-en99Wab95eXlePG-5RVSPHWjWOJDbQ6MJUhjxiQUpLoQkMtq72vnS1AU-oSLcFlg6l0U2tjRFG4JzdTbtDDJ8nSqPdh1Ps80srsQRARIU5JaaUjyGlSK0d4u7o4pcVYM-M7MTIZkb2zMjq3JFTJ-Vsv6X4u_x_6RugE2jr</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Wu, Bozhao</creator><creator>Deng, Hui-Xiong</creator><creator>Jia, Xiangzheng</creator><creator>Shui, Langquan</creator><creator>Gao, Enlai</creator><creator>Liu, Ze</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8202-3713</orcidid><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid><orcidid>https://orcid.org/0000-0001-7638-8003</orcidid></search><sort><creationdate>20200320</creationdate><title>High-performance phosphorene electromechanical actuators</title><author>Wu, Bozhao ; Deng, Hui-Xiong ; Jia, Xiangzheng ; Shui, Langquan ; Gao, Enlai ; Liu, Ze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Actuation</topic><topic>Actuators</topic><topic>Atomic structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge injection</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Muscles</topic><topic>Optical properties</topic><topic>Phosphorene</topic><topic>Phosphorus</topic><topic>Structural integrity</topic><topic>Theoretical</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bozhao</creatorcontrib><creatorcontrib>Deng, Hui-Xiong</creatorcontrib><creatorcontrib>Jia, Xiangzheng</creatorcontrib><creatorcontrib>Shui, Langquan</creatorcontrib><creatorcontrib>Gao, Enlai</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Bozhao</au><au>Deng, Hui-Xiong</au><au>Jia, Xiangzheng</au><au>Shui, Langquan</au><au>Gao, Enlai</au><au>Liu, Ze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance phosphorene electromechanical actuators</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-03-20</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>27</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Phosphorene, a two-dimensional material that can be exfoliated from black phosphorus, exhibits remarkable mechanical, thermal, electronic, and optical properties. In this work, we demonstrate that the unique structure of pristine phosphorene endows this material with exceptional quantum-mechanical performance by using first-principles calculations. Upon charge injection, the maximum actuation stress is 7.0 GPa, corresponding to the maximum actuation strain as high as 36.6% that is over seven times larger than that of graphene (4.7%) and comparable with natural muscle (20–40%). Meanwhile, the maximum volumetric work density of phosphorene (207.7 J/cm
3
) is about three orders of magnitude larger than natural muscle (0.008–0.04 J/cm
3
) and approximately six times larger than graphene (35.3 J/cm
3
). The underlying mechanism of this exceptional electromechanical performance in phosphorene is well revealed from the analysis of atomic structure and electronic structure. Finally, the influence of charge on the mechanical behaviors of phosphorene is examined by mechanical tests, indicating the sufficient structural integrity of phosphorene under the combined electromechanical loading. These findings shed light on phosphorene for promising applications in developing nanoelectromechanical actuators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-0297-6</doi><orcidid>https://orcid.org/0000-0001-8202-3713</orcidid><orcidid>https://orcid.org/0000-0002-5079-9629</orcidid><orcidid>https://orcid.org/0000-0001-7638-8003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2020-03, Vol.6 (1), Article 27 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2380033353 |
source | Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/357/1018 639/925/357/1018 Actuation Actuators Atomic structure Characterization and Evaluation of Materials Charge injection Chemistry and Materials Science Computational Intelligence Electronic structure First principles Graphene Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mechanical properties Mechanical tests Muscles Optical properties Phosphorene Phosphorus Structural integrity Theoretical Two dimensional materials |
title | High-performance phosphorene electromechanical actuators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20phosphorene%20electromechanical%20actuators&rft.jtitle=npj%20computational%20materials&rft.au=Wu,%20Bozhao&rft.date=2020-03-20&rft.volume=6&rft.issue=1&rft.artnum=27&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-0297-6&rft_dat=%3Cproquest_cross%3E2380033353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-3b5dae23d0d64797ec334e56216e073fabcc8ab70ce35e6f438a3276db6771713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2380033353&rft_id=info:pmid/&rfr_iscdi=true |