Loading…

Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning

Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlu...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-17
Main Authors: Zhu, Shunzhi, Chen, Jianghu, Chen, Min, Chen, Xiaosen, Lu, Xiaoshun, Chen, Si, Wang, Dahan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3
container_end_page 17
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Zhu, Shunzhi
Chen, Jianghu
Chen, Min
Chen, Xiaosen
Lu, Xiaoshun
Chen, Si
Wang, Dahan
description Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.
doi_str_mv 10.1155/2020/1574054
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2381573084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381573084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxYMoWKs3z7LgUWN3drP5OGqwWqj0YAVvYZNM7NZ0E3cTi_-9G1LwKAzMwPu9GeZ53iXQOwAhZowyOgMRBVQER94ERMh9AUF07GbKAh8Yfz_1zqzdUspAQDzxNqt8i0VH1kYWn0p_kL3qNuSlrzvlp7W0VlUKDZn3VjWaPEiLJXFD2uxag079RvKK2g5OqcvR2NZIFtp2UhdIliiNdvK5d1LJ2uLFoU-9t_njOn32l6unRXq_9AsOUeeXIhyKoYxiyWmAFS0EFElOIZZBkodFWPKQAxUUeOKeECEwRnOsMA4TnvOpdz3ubU3z1aPtsm3TG-1OZozHLhxO48BRtyNVmMZag1XWGrWT5icDmg1ZZkOW2SFLh9-M-EbpUu7Vf_TVSKNjsJJ_NCScc-C_7NR8rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381573084</pqid></control><display><type>article</type><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><creator>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan</creator><contributor>Aliyu, Mohammad D.</contributor><creatorcontrib>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan ; Aliyu, Mohammad D.</creatorcontrib><description>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/1574054</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Classifiers ; Clutter ; Computer vision ; Machine learning ; Mathematical analysis ; Matrix methods ; Methods ; Neural networks ; Occlusion ; Performance enhancement ; Tracking</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-17</ispartof><rights>Copyright © 2020 Si Chen et al.</rights><rights>Copyright © 2020 Si Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</cites><orcidid>0000-0002-5631-7942 ; 0000-0002-5901-0778 ; 0000-0001-8321-1169 ; 0000-0002-3849-0784 ; 0000-0002-1279-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2381573084/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2381573084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,75096</link.rule.ids></links><search><contributor>Aliyu, Mohammad D.</contributor><creatorcontrib>Zhu, Shunzhi</creatorcontrib><creatorcontrib>Chen, Jianghu</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Xiaosen</creatorcontrib><creatorcontrib>Lu, Xiaoshun</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Dahan</creatorcontrib><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><title>Mathematical problems in engineering</title><description>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Clutter</subject><subject>Computer vision</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Performance enhancement</subject><subject>Tracking</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkM1Lw0AQxYMoWKs3z7LgUWN3drP5OGqwWqj0YAVvYZNM7NZ0E3cTi_-9G1LwKAzMwPu9GeZ53iXQOwAhZowyOgMRBVQER94ERMh9AUF07GbKAh8Yfz_1zqzdUspAQDzxNqt8i0VH1kYWn0p_kL3qNuSlrzvlp7W0VlUKDZn3VjWaPEiLJXFD2uxag079RvKK2g5OqcvR2NZIFtp2UhdIliiNdvK5d1LJ2uLFoU-9t_njOn32l6unRXq_9AsOUeeXIhyKoYxiyWmAFS0EFElOIZZBkodFWPKQAxUUeOKeECEwRnOsMA4TnvOpdz3ubU3z1aPtsm3TG-1OZozHLhxO48BRtyNVmMZag1XWGrWT5icDmg1ZZkOW2SFLh9-M-EbpUu7Vf_TVSKNjsJJ_NCScc-C_7NR8rg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhu, Shunzhi</creator><creator>Chen, Jianghu</creator><creator>Chen, Min</creator><creator>Chen, Xiaosen</creator><creator>Lu, Xiaoshun</creator><creator>Chen, Si</creator><creator>Wang, Dahan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5631-7942</orcidid><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0001-8321-1169</orcidid><orcidid>https://orcid.org/0000-0002-3849-0784</orcidid><orcidid>https://orcid.org/0000-0002-1279-4149</orcidid></search><sort><creationdate>2020</creationdate><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><author>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Clutter</topic><topic>Computer vision</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Performance enhancement</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shunzhi</creatorcontrib><creatorcontrib>Chen, Jianghu</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Xiaosen</creatorcontrib><creatorcontrib>Lu, Xiaoshun</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Dahan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shunzhi</au><au>Chen, Jianghu</au><au>Chen, Min</au><au>Chen, Xiaosen</au><au>Lu, Xiaoshun</au><au>Chen, Si</au><au>Wang, Dahan</au><au>Aliyu, Mohammad D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/1574054</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5631-7942</orcidid><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0001-8321-1169</orcidid><orcidid>https://orcid.org/0000-0002-3849-0784</orcidid><orcidid>https://orcid.org/0000-0002-1279-4149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-17
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2381573084
source Publicly Available Content Database; Wiley_OA刊
subjects Algorithms
Classifiers
Clutter
Computer vision
Machine learning
Mathematical analysis
Matrix methods
Methods
Neural networks
Occlusion
Performance enhancement
Tracking
title Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Tracking%20with%20Multi-Classifier%20Fusion%20Based%20on%20Compressive%20Sensing%20and%20Multiple%20Instance%20Learning&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhu,%20Shunzhi&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/1574054&rft_dat=%3Cproquest_cross%3E2381573084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2381573084&rft_id=info:pmid/&rfr_iscdi=true