Loading…
Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning
Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlu...
Saved in:
Published in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-17 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3 |
container_end_page | 17 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Zhu, Shunzhi Chen, Jianghu Chen, Min Chen, Xiaosen Lu, Xiaoshun Chen, Si Wang, Dahan |
description | Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences. |
doi_str_mv | 10.1155/2020/1574054 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2381573084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381573084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxYMoWKs3z7LgUWN3drP5OGqwWqj0YAVvYZNM7NZ0E3cTi_-9G1LwKAzMwPu9GeZ53iXQOwAhZowyOgMRBVQER94ERMh9AUF07GbKAh8Yfz_1zqzdUspAQDzxNqt8i0VH1kYWn0p_kL3qNuSlrzvlp7W0VlUKDZn3VjWaPEiLJXFD2uxag079RvKK2g5OqcvR2NZIFtp2UhdIliiNdvK5d1LJ2uLFoU-9t_njOn32l6unRXq_9AsOUeeXIhyKoYxiyWmAFS0EFElOIZZBkodFWPKQAxUUeOKeECEwRnOsMA4TnvOpdz3ubU3z1aPtsm3TG-1OZozHLhxO48BRtyNVmMZag1XWGrWT5icDmg1ZZkOW2SFLh9-M-EbpUu7Vf_TVSKNjsJJ_NCScc-C_7NR8rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381573084</pqid></control><display><type>article</type><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><creator>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan</creator><contributor>Aliyu, Mohammad D.</contributor><creatorcontrib>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan ; Aliyu, Mohammad D.</creatorcontrib><description>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/1574054</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Classifiers ; Clutter ; Computer vision ; Machine learning ; Mathematical analysis ; Matrix methods ; Methods ; Neural networks ; Occlusion ; Performance enhancement ; Tracking</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-17</ispartof><rights>Copyright © 2020 Si Chen et al.</rights><rights>Copyright © 2020 Si Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</cites><orcidid>0000-0002-5631-7942 ; 0000-0002-5901-0778 ; 0000-0001-8321-1169 ; 0000-0002-3849-0784 ; 0000-0002-1279-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2381573084/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2381573084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,75096</link.rule.ids></links><search><contributor>Aliyu, Mohammad D.</contributor><creatorcontrib>Zhu, Shunzhi</creatorcontrib><creatorcontrib>Chen, Jianghu</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Xiaosen</creatorcontrib><creatorcontrib>Lu, Xiaoshun</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Dahan</creatorcontrib><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><title>Mathematical problems in engineering</title><description>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Clutter</subject><subject>Computer vision</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Performance enhancement</subject><subject>Tracking</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkM1Lw0AQxYMoWKs3z7LgUWN3drP5OGqwWqj0YAVvYZNM7NZ0E3cTi_-9G1LwKAzMwPu9GeZ53iXQOwAhZowyOgMRBVQER94ERMh9AUF07GbKAh8Yfz_1zqzdUspAQDzxNqt8i0VH1kYWn0p_kL3qNuSlrzvlp7W0VlUKDZn3VjWaPEiLJXFD2uxag079RvKK2g5OqcvR2NZIFtp2UhdIliiNdvK5d1LJ2uLFoU-9t_njOn32l6unRXq_9AsOUeeXIhyKoYxiyWmAFS0EFElOIZZBkodFWPKQAxUUeOKeECEwRnOsMA4TnvOpdz3ubU3z1aPtsm3TG-1OZozHLhxO48BRtyNVmMZag1XWGrWT5icDmg1ZZkOW2SFLh9-M-EbpUu7Vf_TVSKNjsJJ_NCScc-C_7NR8rg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhu, Shunzhi</creator><creator>Chen, Jianghu</creator><creator>Chen, Min</creator><creator>Chen, Xiaosen</creator><creator>Lu, Xiaoshun</creator><creator>Chen, Si</creator><creator>Wang, Dahan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5631-7942</orcidid><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0001-8321-1169</orcidid><orcidid>https://orcid.org/0000-0002-3849-0784</orcidid><orcidid>https://orcid.org/0000-0002-1279-4149</orcidid></search><sort><creationdate>2020</creationdate><title>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</title><author>Zhu, Shunzhi ; Chen, Jianghu ; Chen, Min ; Chen, Xiaosen ; Lu, Xiaoshun ; Chen, Si ; Wang, Dahan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Clutter</topic><topic>Computer vision</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Performance enhancement</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shunzhi</creatorcontrib><creatorcontrib>Chen, Jianghu</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Xiaosen</creatorcontrib><creatorcontrib>Lu, Xiaoshun</creatorcontrib><creatorcontrib>Chen, Si</creatorcontrib><creatorcontrib>Wang, Dahan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shunzhi</au><au>Chen, Jianghu</au><au>Chen, Min</au><au>Chen, Xiaosen</au><au>Lu, Xiaoshun</au><au>Chen, Si</au><au>Wang, Dahan</au><au>Aliyu, Mohammad D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/1574054</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5631-7942</orcidid><orcidid>https://orcid.org/0000-0002-5901-0778</orcidid><orcidid>https://orcid.org/0000-0001-8321-1169</orcidid><orcidid>https://orcid.org/0000-0002-3849-0784</orcidid><orcidid>https://orcid.org/0000-0002-1279-4149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-17 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2381573084 |
source | Publicly Available Content Database; Wiley_OA刊 |
subjects | Algorithms Classifiers Clutter Computer vision Machine learning Mathematical analysis Matrix methods Methods Neural networks Occlusion Performance enhancement Tracking |
title | Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Tracking%20with%20Multi-Classifier%20Fusion%20Based%20on%20Compressive%20Sensing%20and%20Multiple%20Instance%20Learning&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhu,%20Shunzhi&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/1574054&rft_dat=%3Cproquest_cross%3E2381573084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-d56d56d2ea78a304ef0c51c9b018a49b6c6d3631050139215561220befe8693b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2381573084&rft_id=info:pmid/&rfr_iscdi=true |