Loading…

Optimization of the Supply Chain in the Production of Ethanol from Agricultural Biomass Using Mixed-Integer Linear Programming (MILP): A Case Study

The production of biofuels from agricultural biomass has attracted much attention from researchers in recent years. Biomass residues generated from agricultural production of corn and barley represent an essential source of raw material for the production of biofuels, and a mathematical programming-...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-25
Main Authors: Sánchez-Partida, Diana, Aguilar-Mejía, Omar, Minor-Popocatl, Hertwin, León-Olivares, Edgar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The production of biofuels from agricultural biomass has attracted much attention from researchers in recent years. Biomass residues generated from agricultural production of corn and barley represent an essential source of raw material for the production of biofuels, and a mathematical programming-based approach can be used to establish an efficient supply chain. This paper proposes a model of mixed-integer linear programming (MILP) that seeks to minimize the total cost of the bioethanol supply chain. The proposal allows determining the optimal number and location of storage centers, biorefineries, and mixing plants, as well as the flow of biomass and bioethanol between the facilities. To show the proposed approach, we present a case study developed in the region of Tulancingo, Hidalgo, in Mexico (case study), considering the potential of biomass (corn and barley residues) in the region. The results show the costs for the production of bioethanol, transportation, and refining and total cost of the bioethanol supply chain, besides a sensitivity analysis on the costs of the bioethanol supply chain which is presented by mixing different percentages of bioethanol with fossil fuel to satisfy the demand. We conclude that the proposed approach is viable in the process of configuring the supply chain within the proposed study region.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/6029507