Loading…

Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches

In recent years, Tri An, a drinking water reservoir for millions of people in southern Vietnam, has been affected by harmful cyanobacterial blooms (HCBs), raising concerns about public health. It is, therefore, crucial to gain insights into the outbreak mechanism of HCBs and understand the spatiotem...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2020-03, Vol.27 (9), p.9135-9151
Main Authors: Nguyen, Hao-Quang, Ha, Nam-Thang, Pham, Thanh-Luu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, Tri An, a drinking water reservoir for millions of people in southern Vietnam, has been affected by harmful cyanobacterial blooms (HCBs), raising concerns about public health. It is, therefore, crucial to gain insights into the outbreak mechanism of HCBs and understand the spatiotemporal variations of chlorophyll-a (Chl-a) in this highly turbid and productive water. This study aims to evaluate the predictable performance of both approaches using satellite band ratio and machine learning for Chl-a concentration retrieval—a proxy of HCBs. The monthly water quality samples collected from 2016 to 2018 and 23 cloud free Sentinel-2A/B scenes were used to develop Chl-a retrieval models. For the band ratio approach, a strong linear relationship with in situ Chl-a was found for two-band algorithm of Green-NIR. The band ratio-based model accounts for 72% of variation in Chl-a concentration from 2016 to 2018 datasets with an RMSE of 5.95 μg/L. For the machine learning approach, Gaussian process regression (GPR) yielded superior results for Chl-a prediction from water quality parameters with the values of 0.79 ( R 2 ) and 3.06 μg/L (RMSE). Among various climatic parameters, a high correlation ( R 2  = 0.54) between the monthly total precipitation and Chl-a concentration was found. Our analysis also found nitrogen-rich water and TSS in the rainy season as the driving factors of observed HCBs in the eutrophic Tri An Reservoir (TAR), which offer important solutions to the management of HCBs in the future.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-07519-3