Loading…
Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model
Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performan...
Saved in:
Published in: | Transportation planning and technology 2020-04, Vol.43 (3), p.279-292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3 |
container_end_page | 292 |
container_issue | 3 |
container_start_page | 279 |
container_title | Transportation planning and technology |
container_volume | 43 |
creator | Liu, Pengfei Fan, Wei (David) |
description | Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases. |
doi_str_mv | 10.1080/03081060.2020.1735746 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2382044587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382044587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78BCHguTpt0jZ7U_wGxYueQ5pMdiPdZE3S1f33tqxePQwDw_O-Aw8hZyVclCDgEhiIEhq4qKAaTy2rW97skVkJ1bwAVvN9MpuYYoIOyVFKHwBQC9HOyObue92H6PyC5iVSt1ornWmwVAfvUWc0VPlxhhx8WIUh0Q0une4x0eCpjYhfaku1GmMub-mQpiZFI25cGrNPPmPfuwX6TG-j22CkL8Fgf0IOrOoTnv7uY_J-f_d281g8vz483Vw_F5oxkYsWSihNY2wFynALHM28RsMaYNhxbW2nO2AN05Z3BoVQLSAqxmFuOwPQsWNyvutdx_A5YMryIwzRjy9lxUQFnNeiHal6R-kYUopo5Tq6lYpbWYKcFMs_xXJSLH8Vj7mrXc55G-JKfYXYG5nVdjRqo_LaJcn-r_gBJ12FPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382044587</pqid></control><display><type>article</type><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, Pengfei ; Fan, Wei (David)</creator><creatorcontrib>Liu, Pengfei ; Fan, Wei (David)</creatorcontrib><description>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</description><identifier>ISSN: 0308-1060</identifier><identifier>EISSN: 1029-0354</identifier><identifier>DOI: 10.1080/03081060.2020.1735746</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>calibration ; Car following ; Computer simulation ; Connected and autonomous vehicles ; Drivers ; Driving ; Driving conditions ; genetic algorithm ; Genetic algorithms ; Highways ; Impact strength ; Intelligent Driver Model ; Market penetration ; microsimulation ; Penetration ; Performance measurement ; Speed limits ; Traffic ; Vehicles</subject><ispartof>Transportation planning and technology, 2020-04, Vol.43 (3), p.279-292</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</citedby><cites>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</cites><orcidid>0000-0001-7217-151X ; 0000-0001-9815-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Fan, Wei (David)</creatorcontrib><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><title>Transportation planning and technology</title><description>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</description><subject>calibration</subject><subject>Car following</subject><subject>Computer simulation</subject><subject>Connected and autonomous vehicles</subject><subject>Drivers</subject><subject>Driving</subject><subject>Driving conditions</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Highways</subject><subject>Impact strength</subject><subject>Intelligent Driver Model</subject><subject>Market penetration</subject><subject>microsimulation</subject><subject>Penetration</subject><subject>Performance measurement</subject><subject>Speed limits</subject><subject>Traffic</subject><subject>Vehicles</subject><issn>0308-1060</issn><issn>1029-0354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78BCHguTpt0jZ7U_wGxYueQ5pMdiPdZE3S1f33tqxePQwDw_O-Aw8hZyVclCDgEhiIEhq4qKAaTy2rW97skVkJ1bwAVvN9MpuYYoIOyVFKHwBQC9HOyObue92H6PyC5iVSt1ornWmwVAfvUWc0VPlxhhx8WIUh0Q0une4x0eCpjYhfaku1GmMub-mQpiZFI25cGrNPPmPfuwX6TG-j22CkL8Fgf0IOrOoTnv7uY_J-f_d281g8vz483Vw_F5oxkYsWSihNY2wFynALHM28RsMaYNhxbW2nO2AN05Z3BoVQLSAqxmFuOwPQsWNyvutdx_A5YMryIwzRjy9lxUQFnNeiHal6R-kYUopo5Tq6lYpbWYKcFMs_xXJSLH8Vj7mrXc55G-JKfYXYG5nVdjRqo_LaJcn-r_gBJ12FPg</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Liu, Pengfei</creator><creator>Fan, Wei (David)</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7217-151X</orcidid><orcidid>https://orcid.org/0000-0001-9815-710X</orcidid></search><sort><creationdate>20200402</creationdate><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><author>Liu, Pengfei ; Fan, Wei (David)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>calibration</topic><topic>Car following</topic><topic>Computer simulation</topic><topic>Connected and autonomous vehicles</topic><topic>Drivers</topic><topic>Driving</topic><topic>Driving conditions</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Highways</topic><topic>Impact strength</topic><topic>Intelligent Driver Model</topic><topic>Market penetration</topic><topic>microsimulation</topic><topic>Penetration</topic><topic>Performance measurement</topic><topic>Speed limits</topic><topic>Traffic</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Fan, Wei (David)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Transportation planning and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pengfei</au><au>Fan, Wei (David)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</atitle><jtitle>Transportation planning and technology</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>43</volume><issue>3</issue><spage>279</spage><epage>292</epage><pages>279-292</pages><issn>0308-1060</issn><eissn>1029-0354</eissn><abstract>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/03081060.2020.1735746</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7217-151X</orcidid><orcidid>https://orcid.org/0000-0001-9815-710X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1060 |
ispartof | Transportation planning and technology, 2020-04, Vol.43 (3), p.279-292 |
issn | 0308-1060 1029-0354 |
language | eng |
recordid | cdi_proquest_journals_2382044587 |
source | Taylor and Francis Social Sciences and Humanities Collection |
subjects | calibration Car following Computer simulation Connected and autonomous vehicles Drivers Driving Driving conditions genetic algorithm Genetic algorithms Highways Impact strength Intelligent Driver Model Market penetration microsimulation Penetration Performance measurement Speed limits Traffic Vehicles |
title | Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20impact%20of%20connected%20and%20autonomous%20vehicles%20on%20freeway%20capacity%20using%20a%20revised%20Intelligent%20Driver%20Model&rft.jtitle=Transportation%20planning%20and%20technology&rft.au=Liu,%20Pengfei&rft.date=2020-04-02&rft.volume=43&rft.issue=3&rft.spage=279&rft.epage=292&rft.pages=279-292&rft.issn=0308-1060&rft.eissn=1029-0354&rft_id=info:doi/10.1080/03081060.2020.1735746&rft_dat=%3Cproquest_infor%3E2382044587%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382044587&rft_id=info:pmid/&rfr_iscdi=true |