Loading…

Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performan...

Full description

Saved in:
Bibliographic Details
Published in:Transportation planning and technology 2020-04, Vol.43 (3), p.279-292
Main Authors: Liu, Pengfei, Fan, Wei (David)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3
cites cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3
container_end_page 292
container_issue 3
container_start_page 279
container_title Transportation planning and technology
container_volume 43
creator Liu, Pengfei
Fan, Wei (David)
description Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.
doi_str_mv 10.1080/03081060.2020.1735746
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2382044587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382044587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78BCHguTpt0jZ7U_wGxYueQ5pMdiPdZE3S1f33tqxePQwDw_O-Aw8hZyVclCDgEhiIEhq4qKAaTy2rW97skVkJ1bwAVvN9MpuYYoIOyVFKHwBQC9HOyObue92H6PyC5iVSt1ornWmwVAfvUWc0VPlxhhx8WIUh0Q0une4x0eCpjYhfaku1GmMub-mQpiZFI25cGrNPPmPfuwX6TG-j22CkL8Fgf0IOrOoTnv7uY_J-f_d281g8vz483Vw_F5oxkYsWSihNY2wFynALHM28RsMaYNhxbW2nO2AN05Z3BoVQLSAqxmFuOwPQsWNyvutdx_A5YMryIwzRjy9lxUQFnNeiHal6R-kYUopo5Tq6lYpbWYKcFMs_xXJSLH8Vj7mrXc55G-JKfYXYG5nVdjRqo_LaJcn-r_gBJ12FPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382044587</pqid></control><display><type>article</type><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, Pengfei ; Fan, Wei (David)</creator><creatorcontrib>Liu, Pengfei ; Fan, Wei (David)</creatorcontrib><description>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</description><identifier>ISSN: 0308-1060</identifier><identifier>EISSN: 1029-0354</identifier><identifier>DOI: 10.1080/03081060.2020.1735746</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>calibration ; Car following ; Computer simulation ; Connected and autonomous vehicles ; Drivers ; Driving ; Driving conditions ; genetic algorithm ; Genetic algorithms ; Highways ; Impact strength ; Intelligent Driver Model ; Market penetration ; microsimulation ; Penetration ; Performance measurement ; Speed limits ; Traffic ; Vehicles</subject><ispartof>Transportation planning and technology, 2020-04, Vol.43 (3), p.279-292</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</citedby><cites>FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</cites><orcidid>0000-0001-7217-151X ; 0000-0001-9815-710X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Fan, Wei (David)</creatorcontrib><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><title>Transportation planning and technology</title><description>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</description><subject>calibration</subject><subject>Car following</subject><subject>Computer simulation</subject><subject>Connected and autonomous vehicles</subject><subject>Drivers</subject><subject>Driving</subject><subject>Driving conditions</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Highways</subject><subject>Impact strength</subject><subject>Intelligent Driver Model</subject><subject>Market penetration</subject><subject>microsimulation</subject><subject>Penetration</subject><subject>Performance measurement</subject><subject>Speed limits</subject><subject>Traffic</subject><subject>Vehicles</subject><issn>0308-1060</issn><issn>1029-0354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78BCHguTpt0jZ7U_wGxYueQ5pMdiPdZE3S1f33tqxePQwDw_O-Aw8hZyVclCDgEhiIEhq4qKAaTy2rW97skVkJ1bwAVvN9MpuYYoIOyVFKHwBQC9HOyObue92H6PyC5iVSt1ornWmwVAfvUWc0VPlxhhx8WIUh0Q0une4x0eCpjYhfaku1GmMub-mQpiZFI25cGrNPPmPfuwX6TG-j22CkL8Fgf0IOrOoTnv7uY_J-f_d281g8vz483Vw_F5oxkYsWSihNY2wFynALHM28RsMaYNhxbW2nO2AN05Z3BoVQLSAqxmFuOwPQsWNyvutdx_A5YMryIwzRjy9lxUQFnNeiHal6R-kYUopo5Tq6lYpbWYKcFMs_xXJSLH8Vj7mrXc55G-JKfYXYG5nVdjRqo_LaJcn-r_gBJ12FPg</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Liu, Pengfei</creator><creator>Fan, Wei (David)</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7217-151X</orcidid><orcidid>https://orcid.org/0000-0001-9815-710X</orcidid></search><sort><creationdate>20200402</creationdate><title>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</title><author>Liu, Pengfei ; Fan, Wei (David)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>calibration</topic><topic>Car following</topic><topic>Computer simulation</topic><topic>Connected and autonomous vehicles</topic><topic>Drivers</topic><topic>Driving</topic><topic>Driving conditions</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Highways</topic><topic>Impact strength</topic><topic>Intelligent Driver Model</topic><topic>Market penetration</topic><topic>microsimulation</topic><topic>Penetration</topic><topic>Performance measurement</topic><topic>Speed limits</topic><topic>Traffic</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Fan, Wei (David)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Transportation planning and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Pengfei</au><au>Fan, Wei (David)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model</atitle><jtitle>Transportation planning and technology</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>43</volume><issue>3</issue><spage>279</spage><epage>292</epage><pages>279-292</pages><issn>0308-1060</issn><eissn>1029-0354</eissn><abstract>Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/03081060.2020.1735746</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7217-151X</orcidid><orcidid>https://orcid.org/0000-0001-9815-710X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-1060
ispartof Transportation planning and technology, 2020-04, Vol.43 (3), p.279-292
issn 0308-1060
1029-0354
language eng
recordid cdi_proquest_journals_2382044587
source Taylor and Francis Social Sciences and Humanities Collection
subjects calibration
Car following
Computer simulation
Connected and autonomous vehicles
Drivers
Driving
Driving conditions
genetic algorithm
Genetic algorithms
Highways
Impact strength
Intelligent Driver Model
Market penetration
microsimulation
Penetration
Performance measurement
Speed limits
Traffic
Vehicles
title Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20impact%20of%20connected%20and%20autonomous%20vehicles%20on%20freeway%20capacity%20using%20a%20revised%20Intelligent%20Driver%20Model&rft.jtitle=Transportation%20planning%20and%20technology&rft.au=Liu,%20Pengfei&rft.date=2020-04-02&rft.volume=43&rft.issue=3&rft.spage=279&rft.epage=292&rft.pages=279-292&rft.issn=0308-1060&rft.eissn=1029-0354&rft_id=info:doi/10.1080/03081060.2020.1735746&rft_dat=%3Cproquest_infor%3E2382044587%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-70101d6df20ad4f04ed95ed3603eb4cffbcb0363cf4bde88a70eea3409fbd00b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382044587&rft_id=info:pmid/&rfr_iscdi=true