Loading…
Strategies towards Low‐Cost Dual‐Ion Batteries with High Performance
Rocking‐chair based lithium‐ion batteries (LIBs) have extensively applied to consumer electronics and electric vehicles (EVs) for solving the present worldwide issues of fossil fuel exhaustion and environmental pollution. However, due to the growing unprecedented demand of LIBs for commercialization...
Saved in:
Published in: | Angewandte Chemie International Edition 2020-03, Vol.59 (10), p.3802-3832 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rocking‐chair based lithium‐ion batteries (LIBs) have extensively applied to consumer electronics and electric vehicles (EVs) for solving the present worldwide issues of fossil fuel exhaustion and environmental pollution. However, due to the growing unprecedented demand of LIBs for commercialization in EVs and grid‐scale energy storage stations, and a shortage of lithium and cobalt, the increasing cost gives impetus to exploit low‐cost rechargeable battery systems. Dual‐ion batteries (DIBs), in which both cations and anions are involved in the electrochemical redox reaction, are one of the most promising candidates to meet the low‐cost requirements of commercial applications, because of their high working voltage, excellent safety, and environmental friendliness compared to conventional rocking‐chair based LIBs. However, DIB technologies are only at the stage of fundamental research and considerable effort is required to improve the energy density and cycle life further. We review the development history and current situation, and discuss the reaction kinetics involved in DIBs, including various anionic intercalation mechanism of cathodes, and the reactions at the anodes including intercalation and alloying to explore promising strategies towards low‐cost DIBs with high performance.
Beyond conventional batteries: This Review presents the development history and state of the art of DIBs and presents the reaction kinetics and corresponding critical issues including the various anionic intercalation mechanisms of cathodes, and the reactions at the anodes, including intercalation and alloying, to explore promising strategies towards low‐cost DIBs with high performance. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201814294 |