Loading…

Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model

A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2020-03, Vol.125 (6), p.n/a
Main Author: Kärcher, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3
cites cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3
container_end_page n/a
container_issue 6
container_start_page
container_title Journal of geophysical research. Atmospheres
container_volume 125
creator Kärcher, B.
description A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails. Key Points Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence
doi_str_mv 10.1029/2019JD031847
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383006464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383006464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsNTefIAFr0Zns5tN9lhbrS2Vin_Ak2GTzEJKmq27DdKbj-Az-iRuqYgn5zLDfD-Gbz5CThlcMIjVZQxMzcbAWSbSA9KLmVRRppQ8_J3Tl2My8H4JoTLgIhE98nrvbInef318XmmPFX2sV12jN7VtqTV0iM562wR11NiuotN2g06XO9nTuqWaLloM6rheYevDVjd0VDvXeXpnK2xOyJHRjcfBT--T55vrp9FtNF9MpqPhPCqDjSyqsCqklpAmptCCS2MSSIRITVyASlEWsgTkQisuK5NkQmkoFQfNWapRGM375Gx_d-3sW4d-ky9t54Ibn8c84wBSSBGo8z1Vhq-8Q5OvXb3SbpszyHch5n9DDDjf4-91g9t_2Xw2eRgnkkHGvwEhMXWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383006464</pqid></control><display><type>article</type><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Kärcher, B.</creator><creatorcontrib>Kärcher, B.</creatorcontrib><description>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails. Key Points Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2019JD031847</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerodynamics ; Aerosol-cloud interactions ; Aerosols ; cirrus ; Cirrus clouds ; cloud model ; Coefficients ; Computer simulation ; Contrails ; Crystal growth ; Crystals ; Deposition ; Eddy diffusion ; Fluxes ; Freezing ; Geophysics ; Gravity ; Ice ; Ice crystal size ; Ice crystals ; Ice nucleation ; Ice particles ; Mathematical models ; microphysics ; Mixing ratio ; Nucleation ; Nucleation processes ; Optical properties ; Profiles ; Sedimentation ; Simulation ; Supersaturation ; Turbulent diffusion ; Uptake ; Vertical mixing ; Water vapor ; Water vapour</subject><ispartof>Journal of geophysical research. Atmospheres, 2020-03, Vol.125 (6), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</citedby><cites>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</cites><orcidid>0000-0003-0278-4980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kärcher, B.</creatorcontrib><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><title>Journal of geophysical research. Atmospheres</title><description>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails. Key Points Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</description><subject>Aerodynamics</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>cirrus</subject><subject>Cirrus clouds</subject><subject>cloud model</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Contrails</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Deposition</subject><subject>Eddy diffusion</subject><subject>Fluxes</subject><subject>Freezing</subject><subject>Geophysics</subject><subject>Gravity</subject><subject>Ice</subject><subject>Ice crystal size</subject><subject>Ice crystals</subject><subject>Ice nucleation</subject><subject>Ice particles</subject><subject>Mathematical models</subject><subject>microphysics</subject><subject>Mixing ratio</subject><subject>Nucleation</subject><subject>Nucleation processes</subject><subject>Optical properties</subject><subject>Profiles</subject><subject>Sedimentation</subject><subject>Simulation</subject><subject>Supersaturation</subject><subject>Turbulent diffusion</subject><subject>Uptake</subject><subject>Vertical mixing</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsNTefIAFr0Zns5tN9lhbrS2Vin_Ak2GTzEJKmq27DdKbj-Az-iRuqYgn5zLDfD-Gbz5CThlcMIjVZQxMzcbAWSbSA9KLmVRRppQ8_J3Tl2My8H4JoTLgIhE98nrvbInef318XmmPFX2sV12jN7VtqTV0iM562wR11NiuotN2g06XO9nTuqWaLloM6rheYevDVjd0VDvXeXpnK2xOyJHRjcfBT--T55vrp9FtNF9MpqPhPCqDjSyqsCqklpAmptCCS2MSSIRITVyASlEWsgTkQisuK5NkQmkoFQfNWapRGM375Gx_d-3sW4d-ky9t54Ibn8c84wBSSBGo8z1Vhq-8Q5OvXb3SbpszyHch5n9DDDjf4-91g9t_2Xw2eRgnkkHGvwEhMXWq</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Kärcher, B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0278-4980</orcidid></search><sort><creationdate>20200327</creationdate><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><author>Kärcher, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>cirrus</topic><topic>Cirrus clouds</topic><topic>cloud model</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Contrails</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Deposition</topic><topic>Eddy diffusion</topic><topic>Fluxes</topic><topic>Freezing</topic><topic>Geophysics</topic><topic>Gravity</topic><topic>Ice</topic><topic>Ice crystal size</topic><topic>Ice crystals</topic><topic>Ice nucleation</topic><topic>Ice particles</topic><topic>Mathematical models</topic><topic>microphysics</topic><topic>Mixing ratio</topic><topic>Nucleation</topic><topic>Nucleation processes</topic><topic>Optical properties</topic><topic>Profiles</topic><topic>Sedimentation</topic><topic>Simulation</topic><topic>Supersaturation</topic><topic>Turbulent diffusion</topic><topic>Uptake</topic><topic>Vertical mixing</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kärcher, B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kärcher, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2020-03-27</date><risdate>2020</risdate><volume>125</volume><issue>6</issue><epage>n/a</epage><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails. Key Points Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JD031847</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0278-4980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2020-03, Vol.125 (6), p.n/a
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2383006464
source Wiley; Alma/SFX Local Collection
subjects Aerodynamics
Aerosol-cloud interactions
Aerosols
cirrus
Cirrus clouds
cloud model
Coefficients
Computer simulation
Contrails
Crystal growth
Crystals
Deposition
Eddy diffusion
Fluxes
Freezing
Geophysics
Gravity
Ice
Ice crystal size
Ice crystals
Ice nucleation
Ice particles
Mathematical models
microphysics
Mixing ratio
Nucleation
Nucleation processes
Optical properties
Profiles
Sedimentation
Simulation
Supersaturation
Turbulent diffusion
Uptake
Vertical mixing
Water vapor
Water vapour
title Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%E2%80%90Based%20Simulation%20of%20Aerosol%E2%80%90Cloud%20Interactions%20in%20a%20One%E2%80%90Dimensional%20Cirrus%20Model&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=K%C3%A4rcher,%20B.&rft.date=2020-03-27&rft.volume=125&rft.issue=6&rft.epage=n/a&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2019JD031847&rft_dat=%3Cproquest_cross%3E2383006464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383006464&rft_id=info:pmid/&rfr_iscdi=true