Loading…
Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model
A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal...
Saved in:
Published in: | Journal of geophysical research. Atmospheres 2020-03, Vol.125 (6), p.n/a |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 125 |
creator | Kärcher, B. |
description | A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails.
Key Points
Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented
Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus
Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence |
doi_str_mv | 10.1029/2019JD031847 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383006464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383006464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsNTefIAFr0Zns5tN9lhbrS2Vin_Ak2GTzEJKmq27DdKbj-Az-iRuqYgn5zLDfD-Gbz5CThlcMIjVZQxMzcbAWSbSA9KLmVRRppQ8_J3Tl2My8H4JoTLgIhE98nrvbInef318XmmPFX2sV12jN7VtqTV0iM562wR11NiuotN2g06XO9nTuqWaLloM6rheYevDVjd0VDvXeXpnK2xOyJHRjcfBT--T55vrp9FtNF9MpqPhPCqDjSyqsCqklpAmptCCS2MSSIRITVyASlEWsgTkQisuK5NkQmkoFQfNWapRGM375Gx_d-3sW4d-ky9t54Ibn8c84wBSSBGo8z1Vhq-8Q5OvXb3SbpszyHch5n9DDDjf4-91g9t_2Xw2eRgnkkHGvwEhMXWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383006464</pqid></control><display><type>article</type><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Kärcher, B.</creator><creatorcontrib>Kärcher, B.</creatorcontrib><description>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails.
Key Points
Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented
Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus
Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2019JD031847</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerodynamics ; Aerosol-cloud interactions ; Aerosols ; cirrus ; Cirrus clouds ; cloud model ; Coefficients ; Computer simulation ; Contrails ; Crystal growth ; Crystals ; Deposition ; Eddy diffusion ; Fluxes ; Freezing ; Geophysics ; Gravity ; Ice ; Ice crystal size ; Ice crystals ; Ice nucleation ; Ice particles ; Mathematical models ; microphysics ; Mixing ratio ; Nucleation ; Nucleation processes ; Optical properties ; Profiles ; Sedimentation ; Simulation ; Supersaturation ; Turbulent diffusion ; Uptake ; Vertical mixing ; Water vapor ; Water vapour</subject><ispartof>Journal of geophysical research. Atmospheres, 2020-03, Vol.125 (6), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</citedby><cites>FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</cites><orcidid>0000-0003-0278-4980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kärcher, B.</creatorcontrib><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><title>Journal of geophysical research. Atmospheres</title><description>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails.
Key Points
Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented
Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus
Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</description><subject>Aerodynamics</subject><subject>Aerosol-cloud interactions</subject><subject>Aerosols</subject><subject>cirrus</subject><subject>Cirrus clouds</subject><subject>cloud model</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Contrails</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Deposition</subject><subject>Eddy diffusion</subject><subject>Fluxes</subject><subject>Freezing</subject><subject>Geophysics</subject><subject>Gravity</subject><subject>Ice</subject><subject>Ice crystal size</subject><subject>Ice crystals</subject><subject>Ice nucleation</subject><subject>Ice particles</subject><subject>Mathematical models</subject><subject>microphysics</subject><subject>Mixing ratio</subject><subject>Nucleation</subject><subject>Nucleation processes</subject><subject>Optical properties</subject><subject>Profiles</subject><subject>Sedimentation</subject><subject>Simulation</subject><subject>Supersaturation</subject><subject>Turbulent diffusion</subject><subject>Uptake</subject><subject>Vertical mixing</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsNTefIAFr0Zns5tN9lhbrS2Vin_Ak2GTzEJKmq27DdKbj-Az-iRuqYgn5zLDfD-Gbz5CThlcMIjVZQxMzcbAWSbSA9KLmVRRppQ8_J3Tl2My8H4JoTLgIhE98nrvbInef318XmmPFX2sV12jN7VtqTV0iM562wR11NiuotN2g06XO9nTuqWaLloM6rheYevDVjd0VDvXeXpnK2xOyJHRjcfBT--T55vrp9FtNF9MpqPhPCqDjSyqsCqklpAmptCCS2MSSIRITVyASlEWsgTkQisuK5NkQmkoFQfNWapRGM375Gx_d-3sW4d-ky9t54Ibn8c84wBSSBGo8z1Vhq-8Q5OvXb3SbpszyHch5n9DDDjf4-91g9t_2Xw2eRgnkkHGvwEhMXWq</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Kärcher, B.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0278-4980</orcidid></search><sort><creationdate>20200327</creationdate><title>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</title><author>Kärcher, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aerosol-cloud interactions</topic><topic>Aerosols</topic><topic>cirrus</topic><topic>Cirrus clouds</topic><topic>cloud model</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Contrails</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Deposition</topic><topic>Eddy diffusion</topic><topic>Fluxes</topic><topic>Freezing</topic><topic>Geophysics</topic><topic>Gravity</topic><topic>Ice</topic><topic>Ice crystal size</topic><topic>Ice crystals</topic><topic>Ice nucleation</topic><topic>Ice particles</topic><topic>Mathematical models</topic><topic>microphysics</topic><topic>Mixing ratio</topic><topic>Nucleation</topic><topic>Nucleation processes</topic><topic>Optical properties</topic><topic>Profiles</topic><topic>Sedimentation</topic><topic>Simulation</topic><topic>Supersaturation</topic><topic>Turbulent diffusion</topic><topic>Uptake</topic><topic>Vertical mixing</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kärcher, B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kärcher, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2020-03-27</date><risdate>2020</risdate><volume>125</volume><issue>6</issue><epage>n/a</epage><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>A new microphysical cirrus model to simulate ice crystal nucleation, depositional growth, and gravitational settling is described. The model tracks individual simulation ice particles in a vertical column of air and allows moisture and heat profiles to be affected by turbulent diffusion. Ice crystal size‐ and supersaturation‐dependent deposition coefficients are employed in a one‐dimensional model framework. This enables the detailed simulation of microphysical feedbacks influencing the outcome of ice nucleation processes in cirrus. The use of spheroidal water vapor fluxes enables the prediction of primary ice crystal shapes once microscopic models describing the vapor uptake on the surfaces of cirrus ice crystals are better constrained. Two applications addressing contrail evolution and cirrus formation demonstrate the potential of the model for advanced studies of aerosol‐cirrus interactions. It is shown that supersaturation in, and microphysical and optical properties of, cirrus are affected by variable deposition coefficients. Vertical variability in ice supersaturation, ice crystal sedimentation, and high turbulent diffusivity all tend to decrease homogeneously nucleated ice number mixing ratios over time, but low ice growth efficiencies counteract this tendency. Vertical mixing induces a tendency to delay the onset of homogeneous freezing. In situations of sustained large‐scale cooling, natural cirrus clouds may often form in air surrounding persistent contrails.
Key Points
Column model with supersaturation‐dependent deposition coefficients, nonspherical ice crystal shapes, and turbulent diffusivity is presented
Feedback between water vapor attachment kinetics on ice crystal surfaces and growth from the vapor influences ice nucleation in cirrus
Homogeneous freezing at cloud tops transforms contrails into contrail cirrus in meteorological conditions supporting contrail persistence</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2019JD031847</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0278-4980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2020-03, Vol.125 (6), p.n/a |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_2383006464 |
source | Wiley; Alma/SFX Local Collection |
subjects | Aerodynamics Aerosol-cloud interactions Aerosols cirrus Cirrus clouds cloud model Coefficients Computer simulation Contrails Crystal growth Crystals Deposition Eddy diffusion Fluxes Freezing Geophysics Gravity Ice Ice crystal size Ice crystals Ice nucleation Ice particles Mathematical models microphysics Mixing ratio Nucleation Nucleation processes Optical properties Profiles Sedimentation Simulation Supersaturation Turbulent diffusion Uptake Vertical mixing Water vapor Water vapour |
title | Process‐Based Simulation of Aerosol‐Cloud Interactions in a One‐Dimensional Cirrus Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%E2%80%90Based%20Simulation%20of%20Aerosol%E2%80%90Cloud%20Interactions%20in%20a%20One%E2%80%90Dimensional%20Cirrus%20Model&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=K%C3%A4rcher,%20B.&rft.date=2020-03-27&rft.volume=125&rft.issue=6&rft.epage=n/a&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2019JD031847&rft_dat=%3Cproquest_cross%3E2383006464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3458-dedb6a6075fba436ff505447f2b097e6b6c0e34a936df5849a0c930a317ae4fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383006464&rft_id=info:pmid/&rfr_iscdi=true |