Loading…

Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis

Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-03, Vol.30 (13), p.n/a
Main Authors: Ji, Dongxiao, Sun, Jianguo, Tian, Lidong, Chinnappan, Amutha, Zhang, Tianran, Jayathilaka, Wanasinghe Arachchige Dumith Madushanka, Gosh, Rituparana, Baskar, Chinnappan, Zhang, Qiuyu, Ramakrishna, Seeram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3
cites cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced functional materials
container_volume 30
creator Ji, Dongxiao
Sun, Jianguo
Tian, Lidong
Chinnappan, Amutha
Zhang, Tianran
Jayathilaka, Wanasinghe Arachchige Dumith Madushanka
Gosh, Rituparana
Baskar, Chinnappan
Zhang, Qiuyu
Ramakrishna, Seeram
description Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications. A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.
doi_str_mv 10.1002/adfm.201910568
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383181880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383181880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxqMKpPKnV86WOO_WThwnOcKysJX4J0ElbtHEmQmGYAc7Ec2t79BX6JP1SZplERy5zIw-fb-Zkb4oOhB8LjiPv0NNT_OYi0LwVOVfoh2hhJolPM633mdx9zXaDeGBc5FlidyJ_i5tYyyiN7Zhjlh_j2yFPXpn7FQJNK7la-fdENgCfOUsuwTryFTo__3-czN0nfM91uzS6EdsGdiaXYBtwGJAdvXL1PgKdOB7o1tk5Dxbmea-HdmSyGiDtmfHhgare-MstBM0Nminaz20YzBhP9omaAN-e-t70c_T5e1iNTu_OvuxODqf6SSV-Yy4IpAFQJpllGqZqYxLKaGOK6kzQVVdFUqpIqNJw7SSoDQB8TjJRRWLOtmLDjd7O--eBwx9-eAGP30UysmTiFzkOZ9c841LexeCRyo7b57Aj6Xg5TqJcp1E-Z7EBBQb4MW0OH7iLo9OTi8-2P8poZHn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383181880</pqid></control><display><type>article</type><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</creator><creatorcontrib>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</creatorcontrib><description>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications. A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910568</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anchoring ; bifunctional catalysts ; Bimetals ; Carbon ; Carbon fibers ; Carbon nanotubes ; Catalysis ; Catalysts ; Electrocatalysts ; Electrochemical analysis ; electrospinning ; heterointerfaces ; Manganese oxides ; Materials science ; Metal air batteries ; Metal compounds ; metal/metal oxide hybrids ; Nanofibers ; Nanoparticles ; Nickel ; Oxygen evolution reactions ; Zinc-oxygen batteries ; zinc–air batteries</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</citedby><cites>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</cites><orcidid>0000-0002-5255-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Chinnappan, Amutha</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creatorcontrib><creatorcontrib>Gosh, Rituparana</creatorcontrib><creatorcontrib>Baskar, Chinnappan</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><title>Advanced functional materials</title><description>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications. A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</description><subject>Anchoring</subject><subject>bifunctional catalysts</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>electrospinning</subject><subject>heterointerfaces</subject><subject>Manganese oxides</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Metal compounds</subject><subject>metal/metal oxide hybrids</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Zinc-oxygen batteries</subject><subject>zinc–air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQxqMKpPKnV86WOO_WThwnOcKysJX4J0ElbtHEmQmGYAc7Ec2t79BX6JP1SZplERy5zIw-fb-Zkb4oOhB8LjiPv0NNT_OYi0LwVOVfoh2hhJolPM633mdx9zXaDeGBc5FlidyJ_i5tYyyiN7Zhjlh_j2yFPXpn7FQJNK7la-fdENgCfOUsuwTryFTo__3-czN0nfM91uzS6EdsGdiaXYBtwGJAdvXL1PgKdOB7o1tk5Dxbmea-HdmSyGiDtmfHhgare-MstBM0Nminaz20YzBhP9omaAN-e-t70c_T5e1iNTu_OvuxODqf6SSV-Yy4IpAFQJpllGqZqYxLKaGOK6kzQVVdFUqpIqNJw7SSoDQB8TjJRRWLOtmLDjd7O--eBwx9-eAGP30UysmTiFzkOZ9c841LexeCRyo7b57Aj6Xg5TqJcp1E-Z7EBBQb4MW0OH7iLo9OTi8-2P8poZHn</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ji, Dongxiao</creator><creator>Sun, Jianguo</creator><creator>Tian, Lidong</creator><creator>Chinnappan, Amutha</creator><creator>Zhang, Tianran</creator><creator>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creator><creator>Gosh, Rituparana</creator><creator>Baskar, Chinnappan</creator><creator>Zhang, Qiuyu</creator><creator>Ramakrishna, Seeram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid></search><sort><creationdate>20200301</creationdate><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><author>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>bifunctional catalysts</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>electrospinning</topic><topic>heterointerfaces</topic><topic>Manganese oxides</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Metal compounds</topic><topic>metal/metal oxide hybrids</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Zinc-oxygen batteries</topic><topic>zinc–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Chinnappan, Amutha</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creatorcontrib><creatorcontrib>Gosh, Rituparana</creatorcontrib><creatorcontrib>Baskar, Chinnappan</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Dongxiao</au><au>Sun, Jianguo</au><au>Tian, Lidong</au><au>Chinnappan, Amutha</au><au>Zhang, Tianran</au><au>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</au><au>Gosh, Rituparana</au><au>Baskar, Chinnappan</au><au>Zhang, Qiuyu</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications. A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910568</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-03, Vol.30 (13), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2383181880
source Wiley-Blackwell Read & Publish Collection
subjects Anchoring
bifunctional catalysts
Bimetals
Carbon
Carbon fibers
Carbon nanotubes
Catalysis
Catalysts
Electrocatalysts
Electrochemical analysis
electrospinning
heterointerfaces
Manganese oxides
Materials science
Metal air batteries
Metal compounds
metal/metal oxide hybrids
Nanofibers
Nanoparticles
Nickel
Oxygen evolution reactions
Zinc-oxygen batteries
zinc–air batteries
title Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20the%20Heterointerface%20of%20Porous%20Carbon%20Nanofiber%E2%80%93Supported%20Nickel%20and%20Manganese%20Oxide%20Nanoparticle%20for%20Highly%20Efficient%20Bifunctional%20Oxygen%20Catalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Ji,%20Dongxiao&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910568&rft_dat=%3Cproquest_cross%3E2383181880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383181880&rft_id=info:pmid/&rfr_iscdi=true