Loading…
Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis
Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different...
Saved in:
Published in: | Advanced functional materials 2020-03, Vol.30 (13), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3 |
container_end_page | n/a |
container_issue | 13 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Ji, Dongxiao Sun, Jianguo Tian, Lidong Chinnappan, Amutha Zhang, Tianran Jayathilaka, Wanasinghe Arachchige Dumith Madushanka Gosh, Rituparana Baskar, Chinnappan Zhang, Qiuyu Ramakrishna, Seeram |
description | Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications.
A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life. |
doi_str_mv | 10.1002/adfm.201910568 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2383181880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383181880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxqMKpPKnV86WOO_WThwnOcKysJX4J0ElbtHEmQmGYAc7Ec2t79BX6JP1SZplERy5zIw-fb-Zkb4oOhB8LjiPv0NNT_OYi0LwVOVfoh2hhJolPM633mdx9zXaDeGBc5FlidyJ_i5tYyyiN7Zhjlh_j2yFPXpn7FQJNK7la-fdENgCfOUsuwTryFTo__3-czN0nfM91uzS6EdsGdiaXYBtwGJAdvXL1PgKdOB7o1tk5Dxbmea-HdmSyGiDtmfHhgare-MstBM0Nminaz20YzBhP9omaAN-e-t70c_T5e1iNTu_OvuxODqf6SSV-Yy4IpAFQJpllGqZqYxLKaGOK6kzQVVdFUqpIqNJw7SSoDQB8TjJRRWLOtmLDjd7O--eBwx9-eAGP30UysmTiFzkOZ9c841LexeCRyo7b57Aj6Xg5TqJcp1E-Z7EBBQb4MW0OH7iLo9OTi8-2P8poZHn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383181880</pqid></control><display><type>article</type><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</creator><creatorcontrib>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</creatorcontrib><description>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications.
A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910568</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anchoring ; bifunctional catalysts ; Bimetals ; Carbon ; Carbon fibers ; Carbon nanotubes ; Catalysis ; Catalysts ; Electrocatalysts ; Electrochemical analysis ; electrospinning ; heterointerfaces ; Manganese oxides ; Materials science ; Metal air batteries ; Metal compounds ; metal/metal oxide hybrids ; Nanofibers ; Nanoparticles ; Nickel ; Oxygen evolution reactions ; Zinc-oxygen batteries ; zinc–air batteries</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (13), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</citedby><cites>FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</cites><orcidid>0000-0002-5255-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Chinnappan, Amutha</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creatorcontrib><creatorcontrib>Gosh, Rituparana</creatorcontrib><creatorcontrib>Baskar, Chinnappan</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><title>Advanced functional materials</title><description>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications.
A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</description><subject>Anchoring</subject><subject>bifunctional catalysts</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>electrospinning</subject><subject>heterointerfaces</subject><subject>Manganese oxides</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Metal compounds</subject><subject>metal/metal oxide hybrids</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Zinc-oxygen batteries</subject><subject>zinc–air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQxqMKpPKnV86WOO_WThwnOcKysJX4J0ElbtHEmQmGYAc7Ec2t79BX6JP1SZplERy5zIw-fb-Zkb4oOhB8LjiPv0NNT_OYi0LwVOVfoh2hhJolPM633mdx9zXaDeGBc5FlidyJ_i5tYyyiN7Zhjlh_j2yFPXpn7FQJNK7la-fdENgCfOUsuwTryFTo__3-czN0nfM91uzS6EdsGdiaXYBtwGJAdvXL1PgKdOB7o1tk5Dxbmea-HdmSyGiDtmfHhgare-MstBM0Nminaz20YzBhP9omaAN-e-t70c_T5e1iNTu_OvuxODqf6SSV-Yy4IpAFQJpllGqZqYxLKaGOK6kzQVVdFUqpIqNJw7SSoDQB8TjJRRWLOtmLDjd7O--eBwx9-eAGP30UysmTiFzkOZ9c841LexeCRyo7b57Aj6Xg5TqJcp1E-Z7EBBQb4MW0OH7iLo9OTi8-2P8poZHn</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ji, Dongxiao</creator><creator>Sun, Jianguo</creator><creator>Tian, Lidong</creator><creator>Chinnappan, Amutha</creator><creator>Zhang, Tianran</creator><creator>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creator><creator>Gosh, Rituparana</creator><creator>Baskar, Chinnappan</creator><creator>Zhang, Qiuyu</creator><creator>Ramakrishna, Seeram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid></search><sort><creationdate>20200301</creationdate><title>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</title><author>Ji, Dongxiao ; Sun, Jianguo ; Tian, Lidong ; Chinnappan, Amutha ; Zhang, Tianran ; Jayathilaka, Wanasinghe Arachchige Dumith Madushanka ; Gosh, Rituparana ; Baskar, Chinnappan ; Zhang, Qiuyu ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>bifunctional catalysts</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>electrospinning</topic><topic>heterointerfaces</topic><topic>Manganese oxides</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Metal compounds</topic><topic>metal/metal oxide hybrids</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Zinc-oxygen batteries</topic><topic>zinc–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Dongxiao</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><creatorcontrib>Tian, Lidong</creatorcontrib><creatorcontrib>Chinnappan, Amutha</creatorcontrib><creatorcontrib>Zhang, Tianran</creatorcontrib><creatorcontrib>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</creatorcontrib><creatorcontrib>Gosh, Rituparana</creatorcontrib><creatorcontrib>Baskar, Chinnappan</creatorcontrib><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Dongxiao</au><au>Sun, Jianguo</au><au>Tian, Lidong</au><au>Chinnappan, Amutha</au><au>Zhang, Tianran</au><au>Jayathilaka, Wanasinghe Arachchige Dumith Madushanka</au><au>Gosh, Rituparana</au><au>Baskar, Chinnappan</au><au>Zhang, Qiuyu</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>13</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Constructing heterointerfaces between metals and metal compounds is an attractive strategy for the fabrication of high performance electrocatalysts. However, realizing the high degree of fusion of two different metal components to form heterointerfaces remains a great challenge, since the different metal components tend to grow separately in most cases. Herein, by employing carboxyl‐modified carbon nanotubes to stabilize different metal ions, the engineering of abundant Ni|MnO heterointerfaces is achieved in porous carbon nanofibers (Ni|MnO/CNF) during the electrospinning–calcination process. Remarkably, the resulting Ni|MnO/CNF catalyst exhibits activities that are among the best reported for the catalysis of both the oxygen reduction and oxygen evolution reactions. Moreover, the catalyst also demonstrates high power density and long cycle life in Zn–air batteries. Its superior electrochemical properties are mainly ascribed to the synergy between the engineering of oxygen‐deficient Ni|MnO heterointerfaces with a strong Ni/Mn alloying interaction and the 1D porous CNF support. This facile anchoring strategy for the initiation of bimetallic heterointerfaces creates appealing opportunities for the potential use of heteronanomaterials in practical sustainable energy applications.
A carboxyl anchoring strategy is developed to synthesize a Ni/MnO heterointerface within distinctively porous carbon nanofibers. Benefiting from the enhanced dissimilar metal interfacial interactions, the resultant hybrid catalyst exhibits excellent bifunctional electrocatalytic activities toward oxygen reduction/evolution reactions. A zinc–air battery based on the catalyst shows high power density and long cycle life.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910568</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5255-7076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-03, Vol.30 (13), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2383181880 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anchoring bifunctional catalysts Bimetals Carbon Carbon fibers Carbon nanotubes Catalysis Catalysts Electrocatalysts Electrochemical analysis electrospinning heterointerfaces Manganese oxides Materials science Metal air batteries Metal compounds metal/metal oxide hybrids Nanofibers Nanoparticles Nickel Oxygen evolution reactions Zinc-oxygen batteries zinc–air batteries |
title | Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20the%20Heterointerface%20of%20Porous%20Carbon%20Nanofiber%E2%80%93Supported%20Nickel%20and%20Manganese%20Oxide%20Nanoparticle%20for%20Highly%20Efficient%20Bifunctional%20Oxygen%20Catalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Ji,%20Dongxiao&rft.date=2020-03-01&rft.volume=30&rft.issue=13&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910568&rft_dat=%3Cproquest_cross%3E2383181880%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3548-f06fa49aa577f5c47670444ad2b4c71fbdb966697f4ade5b4a6cfaf02381b21d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383181880&rft_id=info:pmid/&rfr_iscdi=true |